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Abstract

We introduce a Schrödinger Bridge method to generate
datasets from diverse domains. This enables the collection
of data for rare diseases and limited datasets. Therefore,
in this paper, we introduce Domain Knowledge Diffusion
Models (DKDM) using Schrödinger Bridge to generate
rare disease images and limited data in medical imbalance
datasets. Our methods demonstrate the capability to gener-
ate cross-domain generalized images for rare diseases be-
yond utilizing a single-domain dataset by training the sep-
arated model with domain datasets. Also, our method sur-
passes the existing Schrödinger Bridge diffusion models by
using domain phase loss. Furthermore, we show that utiliz-
ing images generated from our method is more competitive
than training with existing methods.

1. Introduction

Deep learning has achieved remarkable progress in
computer-aided diagnosis.[22, 28, 29, 34, 43] Recently, nu-
merous studies utilizing diffusion methods have demon-
strated successive success. There are two main ways to
use diffusion methods in medical imaging. Firstly, anomaly
detection utilizes methods that combine deterministic iter-
ative noising and denoising schemes.[2, 16, 40, 45] Sec-
ondly, by using rare disease data, the diffusion model gen-
erates images of these domain.[6, 19]. However, these
methods show significant performance yet rely on train-
ing with large datasets. Many attempts have been made
to train the generative model with limited data[6, 26, 40],
but it still requires large datasets or only single domain
datasets. By utilizing limited data or multi-domain datasets,
training a generative model with good quality and high fi-
delity seems limited. Domain adaption and cross-domain
generalization approaches show their generalization abil-
ity across diverse datasets.[5, 15, 41] Specifically, domain
adaption is a commonly used technique that fine-tunes gen-
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Figure 1. Following RGB statistics, each histopathology dataset
shows diverse datasets/domains. Visual differences, different col-
lected methods, intensity differences, and diverse patterns can be
observed from RGB statistics. We also observed that the phase
terms of data within the same domain are quite similar during
Fourier transformation. However, when comparing data from dif-
ferent domains but belonging to the same class, we found signifi-
cant differences in the phase terms.

erators and discriminators on target datasets. These are usu-
ally based on the generative models. In particular, after
training the model with the source domain, a few param-
eters are fine-tuned, and regularization methods are added
to transfer knowledge about the target domain.[6, 40] How-
ever, resulting diversity is typically less semantic and pro-
duces only very similar images. Therefore, more advanced
methods are required for good quality and high fidelity.
For this reason, we conducted training models with vari-
ous domain datasets using the Schrödinger Bridge. This is
used to generate cross-domain generalized images to bal-
ance datasets for imbalanced datasets. Here, we find that
transferring the trained model with the source domain di-
rectly to target-domain knowledge results in a loss of prior
knowledge. To address problems, we utilize domain phase
loss to minimize the cosine similarity of the reconstructed
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image and target domain. Since similar phases are ob-
served in datasets in the same domain, the method of re-
ducing loss in the domain transfer process is meaningful
in creating cross-domain data. Also, we explore why di-
versity drops when utilizing diversity datasets and how to
produce highly diverse images in multi-domain datasets.
To that end, we introduce Domain Knowledge Diffusion
Models(DKDM) using cross-domain generalization tech-
nique to generate rare disease images with limited data in
medical imbalance datasets. The idea behind DKDM is to
learn various domain representations. Compared to the con-
ventional strategy, since utilizing design loss for domain
generalization, DKDM can produce high-fidelity images
without catastrophic forgetting problems for source domain
datasets. Specifically, we demonstrate that DKDM is com-
petitive for generating images compared to existing meth-
ods. Also, When the training model utilizes the existing
dataset with generated images, we show competitive perfor-
mance. Through extensive experiments, our contributions
follow that:
• Our methods demonstrate the capability to generate

cross-domain generalized images for rare diseases be-
yond utilizing a single-domain dataset by training the
model with multiple diverse domain datasets.

• Domain phase loss resolves the issue of losing prior
knowledge when directly transferring a trained model
from the source domain to the target domain.

• We show competitive performance among the existing
unpaired image-to-image translation models.

2. Related Works
2.1. Unpaired image-to-image translation

Image-to-image (I2I) translation aims to learn how to map
between source and target domains. Initially, the method,
utilizing paired I2I, maps an image from the input to the
output domain by utilizing an adversarial loss. These meth-
ods are augmented by measuring the similarity between the
generated result and the target image. Furthermore, the Cy-
cle consistency approach, which enforces the translation to
preserve important properties of the source domain data,
has emerged. Inspired by the CycleGAN[46], which under-
took the task with unpaired training images, several meth-
ods are proposed by utilizing unpaired adversarial learn-
ing strategy[8, 18, 20]. However, these methods are vexed
by asymmetrical[3] in domain knowledge between hazy
and clear images and training due to the necessity of addi-
tional generator training. To address these problems, these
methods[18, 27] based on I2I models have shifted their fo-
cus to one-sided I2I translation, which utilizes Schrödinger
Bridge and ODEsolver. Recently, Contrastive Unpaired
Translation[21] proposed a multi-layer patch-based con-
trastive learning approach and demonstrated improvements

in I2I. While DRIT and SwapAE[13, 23] proposed dis-
entangling representations into style and content. These
GAN-based methods have been extended to the medical do-
main. To balance the data for all classes, various works
have been tried, such as MRI images [8], cell staining[20],
and COVID-19 images[7]. Despite the continued success of
GAN-based methods in the medical I2I domain, Our pro-
posed method enhances existing methods by iterative re-
finement through the Schrödinger Bridge, addressing the
collapse problem.

2.2. Diffusion Models

Recently, diffusion methods have achieved successive suc-
cess. Those methods encompass a broad family, in-
cluding VAEs[12, 25], Markov Chains[24, 31], and score
matching[32, 33], etc. The diffusion model aims to gradu-
ally recover ground truth signal x0 ∼ p(x0) added random
noise ϵt ∼ N(0, I) to desired images. To be more specific,
the forward diffusion process p(xT |x0) utilizes a Markov
Chain that gradually mitigates x0 to xT with random Gaus-
sian noise.

q(xt|xt−1) = N (xt|
√

1− βtxt−1, βtI) (1)

where βt ∈ (0, 1)is the noise scale. Following the noise
scheduler, βt increases as the timestep grows, and finally,
ground truth images are completely covered with noise.

q(xt|x0) =

T∏
t=1

N (xt|
√
1− βtxt−1, βtI)

= N (xt|
√
ᾱtx0,

√
1− ᾱtI)

(2)

where αt = 1−βt and ᾱt =
∏t

i=1 αi. The diffusion model
ϵθ(xt, t) is training to estimate ϵt from xt, by gradually re-
move noise from the xt. The backward process, commonly
known as

pθ(xt−1|xt) = N (xt−1|µ(xt, t),Σθ(xt, t)) (3)

However, existing diffusion methods don’t consider domain
shifts in datasets. Thus, it is limited to improving model
training with generated images from existing methods to
fill rare disease data and imbalanced data. To address the
problem, we utilize a designed loss function for generating
domain-generalized images.

2.3. Schrödinger Bridge (SB)

A Schrodinger bridge extension of score-based generative
models (SGMs) has been introduced to transfer from an ini-
tial distribution to a terminal distribution over time. It is
closely related to probability theory and stochastic control.
To approximate score-based generative models (SGMs),
[4, 38] introduce leveraging Iterative Proportional Fitting
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Figure 2. The process begins with an initial set of sample images xti . These images are subjected to a series of transformations involving
the addition of noise through a process defined by the function qϕ. As the images pass through each step, they become increasingly noisy,
simulating a Markov chain. The images are then processed through a stochastic gradient (S.G) operation and a backward process that
aims to recover the original image features from the noise, indicated by the function pθ(xt−1|xt). Throughout this transformation process,
several loss functions are employed.

(IPF) algorithm and [14, 33] introduced similar algorithms.
With the successive success of research utilizing SB, several
variants have come on to the diverse stage, such as Prob-
abilistic Lambert Problem, inverse problems[30], Mean-
Field Games[17], constrained transport problems[36], Rie-
mannian manifolds[37], and path samplers[42, 44]. [39]
investigate entropy interpolation between Dirac delta and
noisy data with SB in the unsupervised setting. Other-
wise, in the supervised setting, I2SB[18] and InDI[11] used
paired data to learn SBs between Dirac delta and data while
finding the continuous path. Recently, DDIB[35] tried to
not unpair data but concentrate two SBs between different
domain pairs data and demonstrated utility in a wide variety
of translation tasks. However, to the best of our knowledge
in the Medical community, the SB problem has not been
investigated between Unpaired image-to-image translation.
Thus, our work endeavors to demonstrate that inherent op-
timal transport properties are achievable in various aspects
by utilizing paired or unpaired images. Also, our work tried
to adapt various datasets to demonstrate scalability.

3. Methods
Our model is based on an elaborate Schrödinger Bridge,
which elucidates that SB can be articulated as a sequential
integration of generators determined via adversarial learn-
ing paradigms. More precisely, considering a partition
{ti}Ni=0 of the unit interval [0, 1] with and t0 = 0, tN = 1,
and x̃0 = xt0 , x̃N = xtN , we can represent sb via the
Markov chain decomposition.

p({x̃n}) = p(x̃N |x̃N−1)p(x̃N−1|x̃N−2) · · · p(x̃1|x̃0)p(x̃0)
(4)

Through decomposition , we learn p(x̃i+1|x̃i) presum-
ing we can sample from p(x̃i) (for i = 0, . . . , N − 1).
Thus, we can learn p(x̃i+k|x̃i+(k+1)) and so forth. Con-
sider qϕi(x̃1|x̃i), a conditional distribution orchestrated by
a DNN with parameters ϕi. This is also the denoising and
generation step, which estimates the target domain image
xi. Therefore, here, we optimize ϕi with the arbitrary step
i.

3.1. Model operations of DKDM

Model Description Our model embarks on optimizing a
loss function for a randomly selected time step ti during
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Figure 3. For qualitative evaluation of image-to-image translation results from our DKDM, we transfer input images into different medical
domain images and style images. We also show successive refinements of the predicted target domain image.

the training stage. The inception of the model involves
sampling an image xti from the initial domain and a cor-
responding image from the target distribution denoted by
x1. The target distribution is signified by π1, and the details
of the sampling procedure for xt will be elucidated shortly.

The sampled image xt is subsequently processed
through a transformation function qϕ(x1|xt), yielding
x1(xt), which is an estimation of the target domain data
given xt. The pairs (xt, x1(xt)) and (x1, x1(xt)) are uti-
lized to compute the LSB(ϕ, ti) and the Adversarial Loss
LAdv(ϕ, ti). Here, LSB(ϕ, ti) measures the discrepancy
between the learned distribution qϕ and the true data distri-
bution in the context of a time step ti in a Markov chain.
Specifically, the LSB is defined as an expectation over the
data distribution of the squared Euclidean distance between
xti and xti+1

, regularized by a term involving the entropy
of the learned distribution qϕ. The entropy component in
LSB is estimated through a mutual information estimator,
leveraging the relationship I(X,X) = H(X) for a random
variable X , where I represents mutual information. The
divergence in LAdv is evaluated utilizing adversarial
learning techniques, with x1 and x1(xt) serving as the
”real” and ”fake” inputs to the discriminator.

Sampling Procedure The intermediate and final sam-
ples are generated through a procedure that simulates a
Markov chain, as described above, using the transformation
function qϕ. Commencing with xt, we predict the image
in the target domain x1(xt) through iterative sampling
and the application of Gaussian noise, facilitating the
generation of xtj+1

. This iterative procedure enhances
the prediction of the target domain sample, thereby re-
fining it through the trajectory {x1(xt) : i = 0, . . . , N−1}.

Process Illustration Figure 2 encapsulates the gener-
ation stage of the model, elucidating the transformation
from the original domain Xti to the target domain X1(xtj ).
The illustration conveys the integration of various machine
learning paradigms, including stochastic processes, adver-
sarial training, regularization, and potentially Fourier anal-
ysis, to effectuate this domain transformation.

𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒	𝑡𝑒𝑟𝑚 𝑃ℎ𝑎𝑠𝑒	𝑡𝑒𝑟𝑚

Generated Image Target Domain

𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒	𝑡𝑒𝑟𝑚𝑃ℎ𝑎𝑠𝑒	𝑡𝑒𝑟𝑚

𝐷𝑜𝑚𝑎𝑖𝑛	𝑝ℎ𝑎𝑠𝑒. 𝐿𝑜𝑠𝑠

Figure 4. We employ Fourier transformation on both the generated
and target domain images to analyze texture. The loss function
applied to the model utilizes cosine similarity in the Phase term,
representing the texture. However, the Amplitude term is not uti-
lized.
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Figure 5. DKDM can be possible to iteratively enhance the anticipated image of the target domain, allowing the model to adjust intricate
elements while maintaining the texture.

3.2. Resolving Prior Knowledge Loss

If datasets with a very large difference between domains are
generalized, plenty of existing information on images is lost
when translating input data from the source domain to the
target domain. This phenomenon occurs when new images
are filled only with information from other domains while
information is put in a specific domain. Our goal was to
solve this problem. Since medical data have biases for each
data, there is a big difference between domains. We used the
Fourier transform for each dataset to show amplitude and
phase. As a result, as can be seen in the 4, it was confirmed
that data belonging to the same domain have similar ampli-
tude and phase, and in the case of data in different domains,
the difference was found to be very large. Based on this, we
designed a domain phase loss function for optimization.

LDP =

∑
i,j Phase (X )i,j ·Avg(X̂)i,j√∑

i,j ( Phase (X )i,j)
2 ·

√∑
i,j

(
Avg(X̂)i,j

)2

(5)
where X means generated image and X̂ means Average for
getting phase term numerical value from target domains. In
short, the domain phase loss function measures the cosine
similarity of the phase of the generated image and the phase
of the average target domain.
We also add regularization loss to make the final objective
for DKDM. To further refine the DKDM objective, regu-
larization is introduced to compel the generator network qϕ
to uphold a consistency between the predicted outcome x1

and the initial state x0:

LReg(ϕ, ti) = Ep(x0,xt)Eqϕ(x1|xt) [S(x0, x1)] (6)

In this context, S denotes a scalar, differentiable function
that encapsulates a domain-specific measure of resemblance
between its two inputs. Essentially, S encodes our precon-
ceived notion of similarity across image pairs. We can de-

rive the final loss function here by incorporating the previ-
ously introduced Adversarial Loss and Schrödinger Bridge
Loss term. Consequently, the amended DKDM objective at
time ti can be stated as:

LDKDM(ϕ, ti) = LAdv(ϕ, ti) + λDP,tiLDP(ϕ, ti)

+ λSB,tiLSB(ϕ, ti) + λReg,tiLReg(ϕ, ti) (7)

This is the definitive goal within our DKDM scheme.

4. Experiments
4.1. Detail of datasets

We evaluate the proposed method with multiple Epithelium-
Stroma, CheXpert, and ISIC2019 datasets. Epithelium-
Stroma datasets(e.g IHC[1] and NCH[10]) are common
publicly available datasets. The datasets were collected
from different methods and institutions, which caused the
domain shift among them, and they were labeled as ep-
ithelium or stroma. The IHC[1] datasets contain 10015
histopathological images, and NCH[1] datasets contain a
total of 8015 images. We generate stylized images of the
epithelium class in the IHC dataset within the NCH dataset,
corresponding to the same class. We also apply the reverse
scenario. The CheXpert dataset is composed of 14 classes
with 224,319 images. Due to limitations in incorporating
all available data into the training, we opted to sample the
image for experimentation purposes. The ISIC2019 dataset
has 8 classes with 25,331 images and can be found publicly.
For qualitative comparison, we also utilize the ISIC2019
dataset to demonstrate the leverage for transfer among im-
ages of different classes within pairs that belong to the same
domain.

4.2. Implementation details

Our proposed methods use Markovian discriminator in
LAdv and utilize patch-wise contrastive matching in LReg
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Datasets class samples imbalance ratio domain

IHC 2 820 1.5 •
NCH 2 24,763 1.3 •

ISIC2019 8 25,331 53.8
CheXpert 14 224,316 37.9

Table 1. The details of medical datasets. We utilized IHC and
NCH for the unpaired image-to-image transfer task, while apply-
ing class-wise transfer to CheXpert and ISIC2019.

For training DKDM network for 10 epochs with batch size
1 and Adam optimizer with B1 = 0.5,B2 = 0.9999,. We
also set λ = 0.0002 for the initial learning rate, learning
decay 500, and Ldp = 0.1 for Domain phase loss. We
resized the input image 256 × 256 and normalized it into
the range [-1, 1]. For SB training and simulation, we di-
vided the unit interval [0, 1] into 5 uniform space intervals
with uniform spacing. We adopt entropy estimation meth-
ods[Belghazi et al., 2018] to our model. We apply the data
augmentation method following previous work. However,
unlike previous studies, we applied the mentioned settings
consistently to both the Epithelium-Stroma and ISIC2019
datasets. We used the PyTorch library with a single V100
GPU to train Epithelium-Stroma and ISIC2019 datasets,
which took around 3 and 5 hours.

5. Ablation Studies

5.1. Qualitative Analysis

To substantiate the continual improvement of our proposed
methodology in achieving a seamless transformation of tex-
ture to the target domain, avoiding over-fitting compared to
conventional methods, we have undertaken the visualization
of consecutively transformed images. This visualization
serves as evidence for the ongoing enhancement and sta-
bility of our approach as the texture progressively evolves
into the target domain without succumbing to over-fitting
issues. 3 illustrates the transformation results between
the NCH and IHC datasets, and vice versa, from IHC to
NCH. Similarly, the transformations between Melanocytic
and Carcinoma datasets and the reverse from Carcinoma to
Melanocytic are depicted. The degree of Style Guidance
indicates the number of iterations our model has undergone
to produce the outcomes; the images on the far left con-
tain the most information from the original data, progress-
ing towards the right; they increasingly resemble the target
domain. Notably, during the testing phase, the images re-
sembling the target domain were generated without any tar-
get domain information, based solely on randomly sampled
images from the source domain.

Figure 6. Quantitative graph of the losses while training the mod-
els. This shows the model almost converges from 100 iterations.

5.2. Quantitative Analysis

To assess quantitative metrics, we compared the Fréchet
Inception Distance (FID) [9] scores with those of exist-
ing methods.2 The evaluation focused on the FID scores
during the conversion process from NCH to IHC and vice
versa. Given the nature of the FID score, which compares
the images themselves, we observed that the scores were
relatively high, which is attributable to our dataset’s char-
acteristic of being comprised of unpaired images across
different domains. Upon comparison, it was evident that
our model achieved lower FID scores than the pre-existing
UNSB model. This trend of reduced FID scores was con-
sistent even when the domain conversion was reversed in
our experiments. These findings corroborate the efficacy of
our domain phase loss in mitigating the disparities between
domains, thereby validating its role in bridging the domain
gap. Additionally, as depicted in Figure 6, it is observed
that our model converges after approximately 100 iterations
of the training steps. This applies to both scenarios: trans-
forming fake images into target images and converting fake
images into real images.

Model NCH→IHC ↓ IHC→ NCH ↓
UNSB 365.38 157.16
DKDM(Ours) 307.52 102.08

Table 2. The quantitative FID score for the reconstructed images.
Our model surpasses the FID score of the state-of-the-art model
UNSB

5.3. Gray-scale image to image translation

Recently, few studies have proposed diffusion models for
image transfer using gray-scale images. Therefore, we ap-
plied our proposed method to explore the efficacy of gray-
scale image to image transfer, specifically on CheXpert im-
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Figure 7. To demonstrate our proposed method well on the gray-
scale image translation task, we utilize the CheXpert dataset. In
particular, we tried to transfer images from patient data to normal
data.

ages, aiming to assess its performance across unpaired im-
ages. However, Gray-scale image transfer is limited due to
the absence of color information. It is also typically com-
posed of fine-grained disease. The experiments are shown
in Table 7.

5.4. Detailed imagery description of DKDM

DKDM can generate images that align with the target do-
main while preserving certain aspects of the source domain.
As depicted in Figure 6, DKDM, unlike the state-of-the-
art model UNSB, adeptly retains features of the source do-
main’s images while accurately producing images suitable
for the target domain. This can be attributed to the domain
phase loss, which effectively minimizes the differences be-
tween the domains. In the case of UNSB, it is noted that as
the number of evaluations increases, the distinctive features
of the original source domain gradually diminish. In con-
trast, our model maintains the characteristics of the source
domain well while approaching the target domain.

6. Limitations.
Despite generating a generalized image and showing com-
petitive performance, our proposed DKDM still has limita-
tions in terms of twofold. Firstly, we could use diffusion
pre-trained by large datasets. A pre-training model with
large datasets is highly unlikely to cause catastrophic for-
getting compared to not. Secondly, in datasets compris-
ing fine-grained medical images (such as epithelium-stroma
and ISIC2019, etc..), the image-to-image transfer did not
clearly demonstrate the generation of distinct images. This
issue arises due to variations in individual genetic charac-
teristics, even for the same medical condition. Addition-
ally, our experiments aim to generate generalized images.
For these reasons, It is not sure that it will work well on
other tasks(Classification, Detection, Segmentation, etc..).
Specifically, since the generated image and existing datasets
are different in terms of density, it is not certain whether
they will improve density prediction. (e.g. segmentation).
Also, when we adapt to gray-scale image datasets, transfer-
ring texture isn’t impossible. Thus, we believe that devel-
oping a diffusion model with universal applicability across

both unpaired gray-scale and RGB domains would be an
intriguing avenue for future research.

7. Conclusion
This paper introduces DKDM, which enhances UNSB uti-
lizing Schrödinger Bridge(SB) and combines SB with GAN
training techniques for unpaired image-to-image translation
by adding Domain phase term loss. We demonstrated the
efficacy and prospects of DKDM by extensive experiments
on the unpair domain data or Different classes from the
same dataset. Unlike existing models, we have confirmed
that DKDM preserves the appearances from the source do-
main well while generating images suitable for the target
domain. We also highlight the significance and limitations
of the gray-scale image transfer task, identifying it as a chal-
lenge that needs to be addressed in future research endeav-
ors. We believe that our DKDM method will be useful in
the future medical imaging community.
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