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Abstract

Despite extensive studies on 3D point cloud place recog-
nition, there are still limitations due to the failure to ex-
tract sophisticated local features. In this paper, we intro-
duce a novel network that incorporates a Graph Convolu-
tion and pooling (GCP-Net). We leverage 3D graph con-
volution to enhance detailed features. Furthermore, in tra-
ditional place recognition, the issue of not using pooling
in the process of extracting local features is addressed by
adopting 3D Graph Max-Pooling. Although graph methods
have various advantages, the absence of pooling led to the
adoption of PointNet and sparse convolution. This approach
allowed the use of graph methods without the need to reduce
the batch size. Through extensive experiments on retrieval
tasks, we demonstrate that our method performs better than
existing methods and even shows competitive results on four
different datasets.

1. Introduction
Place recognition is an essential part of the 3D vision
and robotics communities and has been widely adapted
to many fields such as simultaneous localization and
mapping(SLAM)[2, 5, 19], Autonomous Driving(AD)[3,
8, 10, 17, 22, 27, 37], and augment reality[20, 21, 28,
39]. Place recognition is mainly categorized into two
ways; image-based methods and point-cloud-based meth-
ods. Since image-based methods find it hard to capture lo-
cal features, recent efforts have focused on point cloud[16,
30, 38] for place recognition, proposing algorithms that
generate distinctive descriptors [34]. Initially, PointNet[30]
has been utilized in the point cloud by extracting discrim-
inate features. Many studies[30, 35, 43] leverage Point-
Net. PointNetVLAD[35] leverages PointNet[30] to extract
local features and adopts NetVLAD[1] for generating de-
scriptors. However, PointNetVLAD[35] makes it hard to
generalize descriptions of the point cloud. To address the
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Figure 1. 3D point cloud place recognition employs descriptors
from raw 3D data to identify locations. A trained network com-
putes descriptors for query point clouds, facilitating localization
by matching them with point clouds in a database. This method
enables accurate recognition across diverse conditions.

problem, LPD-Net [18] employs a graph-based module to
extract local features of the point clouds focusing on the
structural and spatial complexities of the data. However, it
is limited to predicting the significance of local features;
point contextual attention network (PCAN)[43] further re-
fined the feature extraction through attention mechanism,
enhancing point-wise feature representation. These algo-
rithms need to be revised to fully capture the spatial under-
standing inherent in 3D data. Although the innovative ap-
plication of [30, 35, 43], they overlook the inter-point struc-
tural connections. Conversely, LPD-Net’s [18] efficacy is
impeded due to its dependence on fully connected layers,
constraining its capacity to utilize the intricacies of 3D data
fully. Graph-convolution-based methods [12, 13, 32, 33] in-
troduce graph-based convolutions to enhance local feature
extraction by addressing the challenge of inter-point con-
nections in 3D point cloud place recognition. These meth-
ods incorporate proxy points, edge convolution, and hierar-



chical graph convolutions to harness graph-based method-
ologies for improved structural details and feature compre-
hension preservation. Nevertheless, these approaches use
graph convolution to extract local features, and the sub-
stantial computational load required often reduces the batch
size during the training process, leading to poorer descriptor
quality. 2D Encoding based methods [4, 9, 23–25] address
the challenge of substantial computational load. These stud-
ies aim to enhance the network’s resilience against view-
point alterations, facilitating its management of perspective
variation. However, the inherent loss of information dur-
ing the transition from 3D to 2D results in the acquisition
of poor local features. Consequently, despite endeavors to
extract adequate features, the loss of information severely
constrains the network’s performance. Sparse convolution-
based methods [6, 14, 42] propose networks incorporating
3D sparse convolution to improve computational efficiency
and address the issues associated with information loss in
2D encoding. With the increasing attention towards self-
attention-based methodologies, it’s evident that leveraging
such approaches has become prevalent in place recognition,
primarily aimed at elevating representation quality. SVT-
Net[6] leverage transformers, thus making it possible to
learn both short-range local features and long-range contex-
tual features. On the other hand, Transloc3D, as presented
in [42], employs 3D sparse convolution enhanced by Effi-
cient Channel Attention and transformers. This integration
effectively combines convolutional and transformer tech-
nologies to extract local features in place recognition tasks
efficiently. These methods concentrate on learning contex-
tual features and enhancing efficient attention. However,
sparse convolution-based methods utilize voxels to reduce
computational loads, yet this technique yields inferior lo-
cal features compared to those obtained using raw points.
Moreover, a limitation of Transformers is their significant
need for extensive training data to improve network perfor-
mance. Despite the clear advantage of Graph Convolution-
based methods in extracting superior local features com-
pared to other methods, these approaches require substan-
tial computational loads. This limitation hinders the abil-
ity to stack multiple network layers and results in extended
data processing times. Moreover, adjustments to the batch
size are required during the training process. These limi-
tations restrict the use of Graph Convolution-based meth-
ods in 3D Place Recognition, where large-scale datasets
are used. To address this problem, we propose a Graph
Convolution-based with pooling for 3D point cloud Place
recognition(GCP-Net). We leverage a 3D graph convolu-
tion network(3D GCN) and 3D graph Max-pooling intro-
duced in [16] to enable the extraction of informative local
features using graph-based methods. 3D Graph Convolu-
tion Network, which considers not only inter-point connec-
tions but also structural information. This network offers

the advantage of considering structural information, unlike
previous graph methods used in place recognition. In 3D
point cloud place recognition, we adopt 3D Graph Max-
pooling, a technique not previously used, to enable graph
methods without reducing the batch size during the training
process and to allow for deeper layer construction. Thus,
we obtained discriminative descriptors representing each
submap and performed highly in the retrieval task. Finally,
our method performs better than existing methods and even
shows competitive results on four different datasets. The
following are the contributions of this paper.

• We proposed a novel Graph Convolution-based Network
(GCP-Net) to overcome the issue of high computational
loads associated with existing graph convolution-based
methods.

• We identified problems from not using pooling in 3D
point cloud place recognition and addressed them by
adopting 3D Graph Max-pooling. This has laid the foun-
dation for further advancements in 3D point cloud place
recognition.

• We conducted experiments on four benchmark
datasets[26, 34] and achieved higher performance
than existing methods, even showing higher performance
than existing methods and even showing competitive
results on four different datasets.

2. Related Work

2.1. PointNet-based methods

PointNetVLAD [34] was the first end-to-end network pro-
posed for 3D LiDAR place recognition, addressing the issue
of point clouds being order-independent. It utilizes Point-
Net to extract local features and then employs NetVLAD
to create a global descriptor, leveraging the fact that both
PointNet and NetVLAD are indifferent to the input order.
However, due to its use of PointNet [30], this method fails
to consider the relationships between points when extract-
ing local features. LPD-Net [18] aims to address the limi-
tations of previous methods in capturing structural and spa-
tial features in 3D LiDAR place recognition. It utilizes 10
hand-crafted local features and a graph-based approach to
learning these features. Despite this innovative approach,
LPD-Net faces challenges due to its reliance on multilayer
perceptron. This reliance limits its ability to fully leverage
the complexities of the data, preventing substantial perfor-
mance improvements. PCAN[43] takes a similar approach
to PointNetVLAD in obtaining local features but aims to
craft a more efficient descriptor that can give weight to each
point using a Point Contextual Attention Network. Despite
this, both methods struggle to account for the structural re-
lationships between points due to their reliance on PointNet.
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Figure 2. Overview of extracting local features: The 3D Graph Convolution Network and 3D Graph Max-pooling are aimed at capturing
detailed local features. The 3D Graph Convolution extracts features through relationships with neighboring points in Cartesian coordinates,
while the 3D Graph Max-pooling pools representative values of local features to reduce computational load.

2.2. 2D Encoding-based methods

The 2D Encoding method involves converting the 3D point
cloud into a 2D image using various techniques, fed into
the network as input. Examples of 2D images include range
images [4, 9, 23–25], and digital elevation maps [9]. There
is also CVT[25], which utilizes both Bird Eye View(BEV)
and range images.

2.3. Sparse convolution-based methods

SVT-Net[6] applies transformers to the modified voxels,
such as atom-based sparse voxels and cluster-based sparse
voxels. Similarly, Transloc3D[42] employs 3D sparse con-
volution followed by Efficient Channel Attention and trans-
formers to extract local features, combining advanced con-
volution techniques and transformer technology in 3D spa-
tial recognition networks. LoGG3d-Net[36] employs local
consistency loss and global loss during its training phase,
diverging from the conventional method of using global
loss. This approach of leveraging both local and global
loss metrics has improved performance. MinkLoc3D[14],
a simpler network, employs sparse convolution and Fea-
ture Pyramid Network for the extraction of local features,
and utilizes Generalized Mean Pooling to obtain descrip-
tors made significant strides in MinkLoc3D v2[15] by intro-
ducing a new loss function and dynamically adjusting the
batch size during training to optimize the effectiveness of
the loss function. CrossLoc3D employs a diffusion model
to ensure that data from two distinct sources depicting the
same scene are uniformly represented within the same em-
bedding space. CASSPR[41] obtained local features based
on points and voxels and then fused the two features using
a cross-attention transformer.

2.4. Graph convolution-based methods

EPC-NET[13] leverages proxy points to replace multiple
neighbors, enabling the extraction of local features through
proxy convolution. It effectively employs Grouped-VLAD
for parameter reduction and utilizes graph convolution tech-
niques to adeptly capture local features, emphasizing its ca-
pability to preserve structural details. DAGC[33] utilized
a dual attention module and ResGCN, which combines
DGCNN[38] with residual connections. This network uses
point-wise attention mechanisms and channel-wise atten-
tion mechanisms to understand the relationships between
points and features, respectively, and then extracts local
features. PPT-Net[12] utilizes edge convolution, as intro-
duced in DGCCN, for structural learning during local fea-
ture extraction and a Pyramid Point Transformer Network
to understand spatial relationships between local features.
It combines feature maps of varying sizes using a VLAD
module, with both models effectively capturing structural
features through graph-based methods. Hierarchical Bidi-
rected Graph Convolutions for Large-Scale 3-D Point Cloud
Place Recognition [32] points out the limitations of tra-
ditional graph convolution methods, which use k-nearest
neighbors to obtain features from adjacent points. It aims to
effectively extract features through hierarchical bidirected
graph convolutions.

3. Methods
3.1. Local Feature

The 3D Graph Convolution Network[16] depicted in Figure
3 is designed to capture local features with structural infor-
mation. It considers n neighboring points in Cartesian coor-
dinates to extract features, thereby enabling the acquisition
of structural local features. Although all networks used in
place recognition maintain point clouds during the extrac-
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Figure 3. A point i within a point cloud, along with its 7 neigh-
boring points and 3 kernels. Unlike other graph methods, this ap-
proach uses direction to obtain structural information.

tion of local features, which has limited the use of graph
methods[12, 33], the max pooling proposed in [16] over-
comes the limitations of conventional lidar place recogni-
tion by enabling the acquisition of detailed local features.

3D Graph Convolution Network, capable of extract-
ing not only structural but also spatial local features from a
point cloud, is defined by the following equation:

3DGraphConv (Rn
i ,Km) = ⟨f (pi) , wi⟩

+max
n

{
⟨f (pni ) , w

s
i )⟩+

⟨din, dsk⟩
∥din∥∥dsk∥

}
(1)

The N points in point cloud is represented as P =
{p1, . . . , pN} ∈ R3, and the m neighboring points of the
pi are denoted as P i

m = {pi1, pi2, . . . , pim} ∈ R3. The local
features of a point pi are represented by f(pi) and direction
din represents the direction from pi to pin. Kernel’s central
weight, represented as Km = {K1,K2, . . . ,Km}. Each
kernel Ki has n supports, each of which includes a weight
ws

i and a support direction dsk, which represents the direc-
tion from the kernel’s center to its support. It considers the
neighbors’ points in Cartesian coordinates, which allows
for obtaining local features that are invariant to shifts and
scales. Additionally, using the dot product between each
point and the kernel enables more accurate extraction of
structural local features.

3D Graph Max-pooling [16] is similar to max pooling
in 2D CNNs. Max pooling in a 2D CNN reduces the dimen-
sions of the data by selecting the maximum value, thereby
simplifying the input while preserving essential features.
3D Graph Max-pooling is shown in Algorithm 1. First, each
point within a point cloud initially updates its feature value
to the highest feature value among its n neighboring points
through comparison. Subsequently, points from these N
neighbors are pooled.

3.2. Descriptor

The NetVLAD[1] is a neural network designed for aggre-
gating local features into a compact descriptor for place
recognition tasks. It aggregates unordered local feature in-

Algorithm 1 3D Graph Max-Pooling

Require: Points, Features
Ensure: Pooled Points, Pooled Features

1: Pooled Points← empty list
2: Pooled Features← empty list
3: for each point p in Points do
4: Neighbors← find n nearest neighbors
5: Max Feature← −∞
6: for each neighbor in Neighbors do
7: if Features[neighbor] > Max Feature then
8: Max Feature← Features[neighbor]
9: end if

10: end for
11: Features[p]←Max Feature
12: end for
13: Reduced Points← random sampling
14: for each point r in Reduced Points do
15: Append r to Pooled Points
16: Append Features[r] to Pooled Features
17: end for
18: return Pooled Points, Pooled Features

put to create descriptors through the equation as follows:

V (k) =

N∑
i=1

ew
T
k pi+bk∑

k′ e
wT

k′pi+bk′
(pi − ck), (2)

where a point of point cloud pi ∈ RD represents the D-
dimensional features, V ∈ RL×D denotes the VLAD with
L number of clusters, V (k) denotes the kth cluster and
ck ∈ RD denotes a cluster to which the local features are
assigned. The VLAD representation passes through a fully
connected layer to generate a global descriptor F ∈ R1×D.
It captures the essence of aggregating the differences be-
tween each point’s local features and the cluster ck, each
weighted by the likelihood of assignment to cluster ck. Es-
sentially, it aims to distribute the local features’ informa-
tion based on the ck criteria, thereby achieving an aggre-
gation that considers all local features. NetVLAD[1] dy-
namically summarizes local features into a descriptor op-
timized for specific clusters, designated as ck. This process
involves evaluating the variations among local features rela-
tive to each cluster center, effectively capturing the distinc-
tiveness of each feature set. By assigning weights based on
the probability that a feature belongs to a particular cluster,
NetVLAD ensures that local features efficiently contribute
to the final descriptor.

3.3. Lazy Quadruplet Loss

Inspired by the evolution of loss functions, We adopt the
Lazy Quadruplet Loss function introduced in [29, 34]. The
following equation defines the Lazy Quadruplet Loss:
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Figure 4. The overview of aggregating local features: Netvlad aggregates local features into descriptors and uses these descriptors along
with a Lazy Quadruplet Loss to train the network. In this process, descriptors in a positive relationship with a query attract each other,
while descriptors in a negative relationship with a query repel each other.

LLQ =max
([

α+Dist2pos −Dist2neg

]
+

)
+max

([
β +Dist2pos −Dist2neg∗

]
+

)
,

(3)

where, α and β is margin and [.]+ denotes the hinge loss.
The max operator helps to select a hard positive sample and
a hard negative sample from the query. Distpos is the Eu-
clidean distance between the query and one of the positive
descriptors. Distneg is the Euclidean distance between the
query and negative descriptors. Distneg∗ is the Euclidean
distance between negative descriptors and negative’s nega-
tive descriptors. The loss function encourages the query and
positive descriptors to be closer while expanding the query
and negative descriptors. Additionally, it expands the nega-
tive and negative’s negative descriptors.

4. Experiments
4.1. Implementation details

In our network, the margins for α and β used the Lazy
Quadruplet Loss function are 0.5 and 0.2, respectively. In
the 3D Graph Convolutional Network, the support number
is 1, and the number of neighbors is 20. In NetVLAD, 64
clusters are used. During the training process, two batches
are used. Each batch consists of 1 query, 2 positives, 18
negatives, and 1 additional negative. The training process
is conducted over 20 epochs. After the initial 5 epochs, we
use a strategy of selecting hard negatives for training. Our
algorithm leverages components from PointNetVLAD and
3D GCN.

4.2. Dataset & Evaluation Metric

Four distinct datasets are used to verify our GCP-Net, which
include the Oxford RobotCar dataset [26] along with three

Figure 5. (A) consists of point clouds with 4096 points, (B) with
1024 points, and (C) with 256 points.

in-house datasets [34]. The Oxford RobotCar dataset con-
tains observations gathered from a 10km route repeated
44 times using a SICK LMS-151 2D LiDAR system and
records UTM coordinates. The in-house datasets were col-
lected using a Velodyne-64 LiDAR system. Specifically,
these include data from the university sector dataset, which
spans a 10km circuit completed five times, the residential
area dataset covering an 8km circuit also completed five
times, and the business district dataset, which includes five
laps around a 5km circuit. Each dataset also records UTM
coordinates. The submaps of four datasets are preprocessed
to remove the ground surface, and each submap is down-
sampled to contain 4096 points. They are centered around
the origin of the UTM coordinate system, with the point
cloud positioned within the range of [-1, 1] from the cen-
tral origin. For the Oxford dataset, preprocessing is per-
formed on all points within 20 meters of the vehicle’s tra-
jectory. For the in-house datasets, preprocessing is con-
ducted on all points within a 25m x 25m bounding box.



Oxford U.S. R.A. B.D.
AR@1 AR@1% AR@1 AR@1% AR@1 AR@1% AR@1 AR@1%

PointNetVLAD [34] 62.8 80.3 63.2 72.6 56.1 60.3 57.2 65.3
PCAN [43] 69.1 83.8 62.4 79.1 56.9 71.2 58.1 66.8
LPD-Net [18] 86.3 94.9 87.0 96.0 83.1 90.5 82.5 89.1
EPC-Net [40] 86.2 94.7 - 96.5 - 88.6 - 84.9
SOE-Net [40] 89.4 96.4 82.5 93.2 82.9 91.5 83.3 88.5
MinkLoc3D [14] 93.0 97.9 86.7 95.0 80.4 91.2 81.5 88.5
HiTPR [11] 86.6 93.7 80.9 90.2 78.2 87.2 74.3 79.8
NDT-T [44] 93.8 97.7 - - - - - -
PPT-Net [12] 93.5 98.1 90.1 97.5 84.1 93.3 84.6 90.0
SVT-Net [6] 93.7 97.8 90.1 96.5 84.3 92.7 85.5 90.7
TransLoc3D [42] 95.0 98.5 - 94.9 - 91.5 - 88.4
MinkLoc3Dv2 [15] 96.3 98.9 90.9 96.7 86.5 93.8 86.3 91.2
CrossLOC [7] 94.4 98.6 - - - - - -
CASSPR [41] 95.6 98.5 92.9 97.9 89.5 94.8 87.9 92.1
GCP-Net(ours) 92.5 97.7 92.9 98.3 89.7 95.0 89.0 93.2

Table 1. Average recall (%) at top 1% (@1%) and top 1 (@1) for each model trained on the Oxford RobotCar dataset.

The submaps from four datasets are preprocessed to re-
move the ground surface, with each submap reduced to
4096 points with voxel grid filter[31]. These are central-
ized around the UTM coordinate system’s origin, position-
ing the point cloud within a [-1, 1] range from the center.
In the case of the Oxford dataset, all points within 20 me-
ters of the vehicle’s trajectory are preprocessed. For the in-
house datasets, all points within 25m x 25m bounding box
of the vehicle’s trajectory are preprocessed. The GCP-Net
is trained using 21,711 submaps from the Oxford dataset
and was evaluated on 3,030 Oxford submaps not involved
in training, as well as on 4,542 submaps from three in-house
datasets representing a university sector, a residential area,
and a business district, referred to as U.S., R.A., and B.D.,
respectively. For the training process, a submap is labeled
as positive if it lies within 10 meters of the query submap
and as negative if it is more than 50 meters away from
the query submap. Place recognition evaluates its effective-
ness through a retrieval task. In the task, a descriptor gen-
erated from a query map is used to search a database con-
taining descriptors of known locations. The goal is to find
the closest match based on the descriptors, with success-
ful retrieval typically defined by finding a location descrip-
tor within a specified geometric distance from the query.
This method is used for evaluation, testing the network’s ca-
pacity to accurately recognize and match places even with
changes in viewpoint and environmental conditions. Suc-
cess is achieved if at least one of the search results retrieved
by a query submap falls within a geometric distance of 25
meters. Our evaluation metric uses Average Recall@1 and
Average Recall@1%, as used in PointNetVLAD[34].

4.3. Evaluation Results

We conduct evaluations on four different datasets and
benchmark our results against alternative approaches, as
detailed in Table 1. Our GCP-Net marked improvements
in performance on the U.S., R.A., and B.D. datasets, sur-
passing previous state-of-the-art achievements by signifi-
cant margins. In particular, for the U.S. dataset, we achieved
an increase of 1.3% in AR@1 and 0.4% in AR@1%. For
R.A., we report improvements of 0.2% in AR@1 and 0.2%
in AR@1%. Additionally, for B.D., we observe a notable
improvement of 1.1% in AR@1 and 1.1% in AR@1%. Al-
though our results on the Oxford dataset do not surpass
state-of-the-art levels, these enhancements underscore the
robustness of our network across various domains. We con-
duct evaluations on four different datasets and benchmark
our results against alternative approaches, as detailed in Ta-
ble. Our GCP-Net marked improvements in performance on
the U.S., R.A., and B.D. datasets, surpassing previous state-
of-the-art achievements by significant margins. In particu-
lar, for the U.S. dataset, we achieved an increase of 1.3%
in Average Recall@1 and 0.4% in Average Recall@1%.
In the R.A. dataset, we observed enhancements of 0.2% in
both Average Recall@1 and Average Recall@1%. More-
over, the B.D. dataset showed substantial gains with an im-
provement of 1.1% in both Average Recall@1 and Average
Recall@1%. While our performance on the Oxford dataset
did not exceed that of the leading method, the overall en-
hancements highlight the effectiveness and adaptability of
our network across different environmental contexts, con-
firming its robust performance across a variety of environ-
ments. These results not only demonstrate the capability of
our approach to effectively navigate and recognize diverse
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Figure 6. Examples of retrieval successes and failures when using
our network. The top part is the query point clouds, and the bottom
part is the point clouds of the retrieval. (A) and (B) show the near-
est correct matches to the query. (C) shows an erroneous match to
the query, indicating a mismatch within our retrieval process.

geographical areas but also establish a new benchmark for
future research in place recognition. The robustness of our
network is highlighted by its use of pooling while extracting
local features, which distinguishes it from other networks
by preserving high levels of performance despite variations
in the domain. This stability is primarily due to the detailed
extraction of local features, made possible through the use
of pooling.

5. Ablation Study
5.1. Qualitative results

For a comprehensive understanding, we conducted a qual-
itative evaluation of our proposed GCP-Net. Figure 6 il-
lustrates both success and failure cases in retrieval tasks.
Despite utilizing sophisticated techniques for extracting lo-
cal features, the pooling method used proved less effective
in comparing different submaps accurately. Nonetheless, as
shown in Table 1, our method outperforms other methods,
confirming that our approach not only manages complex re-
trieval tasks effectively but also significantly advances over
existing methods. These results underline the potential and
limitations of our network’s matching accuracy.

6. Limitations and future work
Graph-based methods are highly effective at extracting
local features. However, the computational demands of
graph-based methods limit their ability to process large
amounts of data at once, which has restricted their network
performance. Nonetheless, the adoption of 3D Graph
max-pooling in lidar place recognition has helped over-
come these limitations and has contributed to the field’s
advancement. However, 3D Graph Max-pooling randomly
samples points from the point cloud, which presents a
drawback as it fails to differentiate between significant and

insignificant points.

7. Conclusion

In this paper, we show Graph Convolution with Pooling
Network(GCP-Net) for place recognition integrates a 3D
Graph Convolution Network to greatly improve the extrac-
tion of discriminative local features. Furthermore, by uti-
lizing Graph Max-pooling for Graph Convolution, we re-
duced the size of the network. Our proposed GCP-Net is
demonstrated through experimental results on four differ-
ent datasets, showing that our method not only outperforms
existing methods but also shows competitive results.
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