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abstract
In this study, we present two new methods to enhance image-to-image translation performance. First, we investigate the

integration of the Attention Module with the encoder. CBAM aims to improve feature representation in convolutional neural
networks, while pSp offers a robust method for encoding input images into their corresponding latent domain. By incorporat-
ing CBAM into pSp, we achieve superior feature extraction, leading to more precise image reconstructions, increased control
over image translation, and the ability to handle complex tasks, such as multi-modal synthesis or cross-domain translation.
Our proposed approach demonstrates notable performance improvement in qualitative analysis compared to existing methods
such as pSp, IDInvert and E2Style on the CelebAMask-HQ dataset. Second, we offer a more efficient E2Style model using
the abortion method. In the training process, we exclude inefficient iterations by prompting an abortion upon meeting certain
conditions. This novel approach has proven effective in addressing the issue of overfitting and improves upon other aspects
by comparing previous models.

1 Introduction

In recent times, Generative Adversarial Networks (GAN) [9]

have undergone significant advancements. GAN inversion(Figure

1) [10] is a technique aimed at understanding and controlling the

latent space of GAN. Its goal is to find the latent vector that best

reconstructs a given image using a pre-trained GAN, with applica-

tions in image editing, style transfer, and content manipulation.

Figure 1: D represents GAN inversion.
Given a real image x as input, D outputs a latent code x∗.

Specifically, x∗ is obtained as x∗ = D(z∗), where z∗ is the
optimized noise that reconstructs the input image x.

However, in working with real images, the invertibility require-

ment poses a challenge. Directly inverting a real image into a la-

tent code often does not result in an accurate reconstruction.

To address this limitation, the pixel2style2pixel (pSp) [1] trans-

lation method uses a novel encoder architecture in conjunction

with the pretrained StyleGAN [6, 7] generator as a comprehensive

image-to-image translation framework. Instead of trying to invert

the input image into a latent code, the pSp method directly encodes

input images into the desired output latent.

Furthermore, Convolutional Block Attention Module

(CBAM) [2] is a neural network architecture component that

enhances the feature representation of convolutional neural net-

works (CNN) [11]. CBAM uses Channel and Spatial Attention

to adaptively recalibrate input data’s spatial and channel-wise

features, aiding in acquiring more discriminative features and

improving the network’s performance.

To improve the performance of the pSp translation method, we

incorporated CBAM into pSp and named this model StyleGAN

with Attention-based Encoding (SAE).

2 Access to abortion method

The emergence of deep-learning-based image processing

technology has given rise to countless new studies utilizing

GAN(Generative Adversarial Networks) which generates new im-

ages from input images. GAN structure consists of the genera-

tor and the discriminator in an adversarial training process. GAN

model learns the latent space, the distribution of the latent vectors

of the input image. The encoder converts image to feature vector,

while the decoder reconstructs these features - latent vectors to new

image. GAN inversion is the process of finding the latent vector

that allows us to derive an output image most similar to the input.

StyleGAN [7] emerged with its novel approach of incorporating

a style-based generator. With the use of its new generator based



Figure 2: SAE model architecture
The process of generating images use the pSp framework with attention loss processing module layer. Feature maps are extracted from

the input image using a standard feature pyramid [14] over a ResNet backbone [12]. Then, feature maps are classified into small or
large mapping networks based on their size for each of the 18 target styles. Small mapping networks are used for small feature maps
and generate 512-dimensional vectors using the Map2Style network, which are then applied to StyleGAN for image generation. A
attention loss processing module layer is added to the pSp module to enhance feature representation and improve image quality.

on style transition, StyleGAN made possible the control over not

only overall characteristics but also elaborate details - skin color,

age, gender etc. E2Style [8] aims to improve the efficiency and

effectiveness of StyleGAN inversion. E2Style’s process is as fol-

lows: First, its encoder network takes into account the hierarchical

structure to expect the latent vectors. These are extracted from the

encoder’s various spatial levels, and with the various details of the

pre-trained StyleGAN generator, the learning difficulty is lowered.

Second, E2Style accepts shared efficient prediction heads for each

level. This includes global average pooling layers of varying size

and a full-connected layer, resulting in a more lightweight and ef-

ficient network.

Figure 3: Change of loss values in pSp(left) and E2Style(right)

Fig.3 shows a gradual but continuous decline in loss function

values. We identify points where the change in the loss value has

slowed down and become trivial. These suggest the potential oc-

currence of overfitting in the training set. To address this issue

while maintaining the quality of generated images, we propose a

novel approach. We highlight the iteration process in E2Style’s

hierarchical structure, which proposed methods of improving the

efficiency and effectiveness of StyleGAN inversion. We introduce

the proposal of reducing the fixed number of iterations from the ba-

sic E2Style method. This is expected to ease the burden of training

calculation as well as lessen the chances of overfitting in training

datasets.

3 StyleGAN with Attention-based Encoding

The pSp framework combines a pre-trained StyleGAN genera-

tor and the W+ latent space to accurately represent input images.

However, directly encoding images into W+ using a single vector

from the encoder’s last layer has limitations in capturing finer de-

tails and reconstructing the image accurately. Therefore, a robust

encoder is necessary to map each input image to its corresponding

encoding in the latent domain. We propose the SAE model, an en-

hanced version of the pSp framework that utilizes CBAM in place

of its CNN parts. This modification aims to improve the overall

performance of the model.

In StyleGAN, it was discovered that style inputs correspond

to different levels of detail, divided into three groups - coarse,



medium, and fine. Building on this insight, pSp incorporates a fea-

ture pyramid to generate three levels of feature maps from which

styles are extracted using an intermediate network, map2style, as

shown in Figure 2. These categorized styles are then aligned with

the hierarchical representation and fed into the generator in corre-

spondence to their scale to generate the output image, completing

the translation from input to output pixels through the intermedi-

ate style representation. The complete architecture is presented in

Figure 2.

4 SAE Loss functions

Our framework utilizes a weighted combination of several ob-

jectives to train the encoder. The pixel-wise L2 loss is utilized as

follows:

L2(x) = ||x−D(E(x))||2 (1)

To learn perceptual similarities, we incorporate the LLPIPS

loss [?], which has been shown to better preserve image quality

compared to the standard perceptual loss [?]:

LLPIPS(x) = ||F (x)− F (D(E(x)))||2 (2)

Here, F( · ) denotes the perceptual feature extractor. In addition,

to encourage the encoder to output latent style vectors closer to the

average latent vector, we include the following regularization loss:

Lreg(x) = ||E(x)− w̄||2 (3)

To tackle the challenge of preserving the input identity when en-

coding facial images, we incorporate a dedicated recognition loss

measuring the cosine similarity between the output image and its

source:

LID(x) = 1− ⟨(x), R(D(E(x)))⟩ (4)

The loss function defined up to this point is referred to as the

encoder loss, and is defined as:

LE(x) = λ1L(x)+λ2LLPIPS(x)+λ3LID(x)+λ4Lreg(x) (5)

In the Convolutional Block Attention Module (CBAM), used as

a sub-module of the pSp encoder during training, there are two

essential components: the channel attention module and the spa-

tial attention module. The channel attention module calculates a

1D channel attention map Mc ∈ RC×1×1, weighting the impor-

tance of different channels in the feature map F ∈ RC×H×W .

The spatial attention module computes a 2D spatial attention map

Ms ∈ R1×H×W , emphasizing significant regions in the feature

map F .

F′(x) = Mc(F)⊗ F,

F′′(x) = Ms(F
′)⊗ F, (6)

To generate the channel context descriptors Fc
avg and Fc

max

used in the channel attention module, both average-pooling and

max-pooling operations are applied to the feature map F to aggre-

gate its spatial information. These operations are used to compute

the statistics of the feature map along the channel dimension, re-

sulting in two distinct spatial context descriptors.

Mc(F) =σ(MLP (AvgPool(F) +MLP (MaxPool(F)))

=σ(W1(W0(F
c
avg)) +W1(W0(F

c
max))) (7)

In contrast to the channel attention module that focuses on the

what, the spatial attention module in CBAM is dedicated to iden-

tifying the where in the input feature map. To compute the spatial

attention, the module applies both average pooling and max pool-

ing operations along the channel axis. These operations generate

two spatial context descriptors, which are concatenated to create an

efficient feature descriptor. A convolutional layer is subsequently

applied to the concatenated descriptor to generate the spatial atten-

tion map. This map encodes where to emphasize or suppress in the

input feature map, allowing the network to focus on the most rel-

evant spatial regions. By incorporating the spatial attention mod-

ule into the network, CBAM is able to enhance the performance

of various computer vision tasks, such as image classification and

object detection.

Ms(F) =σ(f7×7([AvgPool(F;MaxPool(F )]))

=σ(f7×7([Fs
avg;F

s
max])) (8)

So eventually the attention map is used to make the attention

loss. Therefore the overall loss function is as follows,

Ltotal(x) = λLE + λ4||F′′(x)− F′′(G(E(x)))||2 (9)

CBAM is renowned for exhibiting superior performance compared

to basic CNN. SAE is made by utilizing CBAM as a sub-module

of the pSp encoder instead of a standard CNN, there is a notice-

able improvement in the output. This enhancement will be demon-

strated in the experimental results section of the paper.



Figure 4: E2Style with Abortion. Abortor prevents overffitng by truncating the last stage under certain conditions.

5 Abortion method Loss functions

5.1 Functional Equation

We adopt the same functions introduced by E2Style. E2Style’s

loss function can be largely divided into two parts.

Common losses. Common losses consist of L2 loss and

LLPIPS [3] loss . L2 refers to the difference between the input

image and the output image, which has been reconstructed through

the encoder and the StyleGAN generator, acts as decoder, on a

pixel level.

L2 = ∥x−D(E(x))∥2 (1)

Using L2 solely is insufficient to discern the features of the recon-

struction result. Therefore, we derive the feature-level loss through

the additional use of LLPIPS loss.

LLPIPS = ∥F (x)− F (D(E(x)))∥2 (2)

Multi-Layer Loss. Multi-Layer Loss consists of Identity Loss

and Parsing Loss between multi layer outputs. In GAN inversion,

it is crucial to conserve the identity information of the original im-

age’s attributes. Multi-Layer Identity Loss refers to maintained

consistency between the input image and the inverted output im-

age

LID =

5∑
k=1

(1− cos(Nf (x), (Nf (D(E(x))))) (3)

cos refers to cosine similarity. Nf (x) is the feature that corre-

sponds to semantic level k in the facial recognition network N [4]

for image x. The Parsing Loss function in the Multi-Layer works

in the opposite way from Identification Loss by separating differ-

ent features.

LPAR =

5∑
k=1

(1− cos(Pk(x), (Pk(D(E(x))))) (4)

Likewise, Pk(x) refers to the feature that corresponds to the kth

semantic level in the pre-trained facial parsing network P [5] for

input image x. Parsing loss operates in tandem with Identity loss

in a complementary way, enabling the two loss functions to operate

as each feature in the multilayer forms clusters.

Summary. To sum up, the value of the total loss function can

be expressed as below:

Ltotal = λ1L2 + λ2LLPIPS + λ3LID + λ4LPAR (5)



5.2 Abortion method description

In this paper, we propose the abortion technique in the E2Style

training process. Previous E2Style does not allow for flexible ad-

justment of the number of iterations. So it is expected a vast load

of data in order to extract the images, and also lies the risk of over-

fitting in the training set. Our approach proposes two type of abor-

tion methods to counter such drawbacks, through which we expect

more efficient results.

The first method is relative method. We determine a relative

call condition for the abortion function. In this method we begin

by designating previous loss = ∞. After the 1st iteration, we cal-

culate the value of loss and subtract it from the previous loss. Here,

if the result is positive, we reset the value of abort count to 0, be-

cause it has yielded a result image of higher quality. Otherwise, we

continuously add 1 to the value of abort count. The previous loss,

which we denoted as ∞ prior to the 1st iteration will now be up-

dated to the newly derived loss. Once count reaches 10 after a se-

ries of reiterations, the abortion function is called and abort count

is reset. The abortion function then indefinitely reduces the num-

ber of repetitions the input images will undergo.

The second is the absolute method, in which we set a ran-

dom parameter a. This parameter acts as an absolute criterion

that determines whether to reset abort count to 0 or proceed to

add increments of 1. Then, the value of loss is derived by con-

tinuously adding one iteration until abortion occurs. If the value

of (a – loss) is positive, this, as mentioned above results in a

higher quality image and therefore resets abort count to 0. Oth-

erwise, abort count will increase by increments of 1. Likewise,

abort count exceeding 10 will call the abortion function and re-

sult in abort count being reset. This process is as shown in Fig. 4.

By applying the new methods proposed in this paper, we can re-

duce the amount of calculations by excluding inefficient iterations,

and expect positive results by avoiding overfitting issues with our

training dataset.

In terms of implementation, the method of reducing iteration

should be approached thoughtfully. In particular, when using ab-

solute abortion method, setting a high threshold may result in in-

appropriate abortion which occurs before the sufficient training. It

leads to sub-optimal performance due to an insufficiently trained

encoder. Therefore, careful consideration and optimization of the

threshold value are necessary to ensure the training process which

achieves the desired performance while avoiding potential negative

impacts.

6 Experimental Results of SAE

Figure 5: SAE with other GAN inversion models

As seen in the Figure 5, our SAE module shows slightly better

performance in finer details compared to the results using pSp, ID-

Invert [13] and E2Style models. This indicates that our proposed

CBAM loss function enhances the performance of GAN.

7 Experimental Results of Abortion method

To demonstrate the benefits of abortion in the training, we com-

pared our module with the existing modules using multiple images.

Implementation detail. For absolute abortion method to be

used, prior knowledge of the loss function in E2Style is neces-

sary. Therefore, in our experiments, we used the relative abor-

tion method instead. The initial weights for the weighting fac-

tor of each loss function were set as 1, 0.8, 0.5, and 1, respec-

tively. We trained our model using a dataset of 25,000 images from

CelebAMask-HQ [5] and evaluated it on a randomly selected set

of 5,000 images that were not used in the training set.

Results. Examples of the training results for our model and

other models are shown below.

Fig.6 shows that our model demonstrates excellent detail repro-

duction of the original images. Our model excels at implementing

small details such as visible teeth in an open mouth and direction-



Figure 6: Visual comparison of the GAN inversion models

ally oriented pupils, which set our model apart from others. This

result can be thought to have occurred by preventing overfitting to

the training set through our abortion method.

In terms of the amount of computation for training, pSp model

has only 1 fixed stage, and the E2Style model has N fixed stages.

If solely one stage is passed to be trained, the performance will

be lower than a model that passes through N -stages. However, a

model with N fixed stages carries a greater risk of overfitting than a

model that completes only one stage. Moreover, N -stages require

N times more operations on all training sets, resulting in a slower

learning speed. Our model is implemented in a direction that over-

comes these two drawbacks, starting from the N -stages and grad-

ually reducing the number of stages, maintaining a performance

level similar to that of a model that completes the N -stages while

dealing with overfitting and reducing the computational load.

8 Conclusion

We suggest two novel approaches to improve image-to-image

generation quality between state-of-art models. These two mod-

ules presented both showed better results compared to the most

recent results. SAE which includes the combination of the atten-

tion module and encoder, may result in better reconstruction of im-

ages, finer control of image translation, and improved handling of

complex tasks. After adding the attention module and creating an

attention loss for training, the qualitative performance improved

compared to the pSp, IDInvert, and E2Style methods. Abortion

method allows the model to process dynamic stages to prevent

overfitting by introducing the abortion technique to the E2Style

model. Our model demonstrates three advantages over the previ-

ous model, namely, i. reducing overfitting, ii. decreasing compu-

tational complexity compared to the fixed N -stage E2Style model,

and iii. preserving fine-grained details of the original images.
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