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Abstract

We propose the approach to generate multi-view optical
illusions using latent diffusion models enhanced by multi-
modal techniques. By incorporating sound and text inputs,
our model expands the capability of traditional pixel-based
diffusion processes, allowing for a richer, more dynamic
generation of illusions. Central to our method is the inte-
gration of a denoising block designed to minimize latent-
based artifacts, thus preserving the integrity and quality
of the illusions. Our experimental results demonstrate the
effectiveness of our approach, highlighted by the superior
performance of our denoising techniques in improving the
fidelity of generated illusions as assessed by CLIP scores.
This research not only advances the technical framework
for illusion generation but also opens new avenues for the
application of multimodal inputs in the creative domain.
Here is our implementation.

1. Introduction

Geng [4] present a simple but effective method of gen-
erating multi-view optical illusions using diffusion models:
given a noisy image xt, the estimated noise ϵit is computed
conditioned on text prompts pi and after applying transfor-
mation vi. Geng et al. implemented their method on a pixel-
based diffusion model to prevent the artifacts under rotation
or flips when using a latent diffusion model. Based on their
work, we expand sound as an additional modality that can
be fused into the model. We also explore the possibility of
replacing the pixel-based diffusion model with a latent one.
Our potential contributions are:

• Generate multi-view optical illusions using both sound
and text as the input prompts.

• Mitigate latent-based artifacts with a denoising block
with a designed denoising schedule.

2. Related work
We aimed to utilize multimodality, mainly focusing on

text, sound, and image modalities. Based on these, we have
designed and implemented a diffusion model [6] to generate
practical outputs for specific applications. Throughout this
process, the resultant product was a latent diffusion model.
We refined this model by incorporating a denoising step, en-
abling us to produce the final outputs. This approach under-
scores our commitment to leveraging advanced multimodal
technologies to enhance application-specific performance.

2.1. Diffusion Models

The diffusion model aims to gradually recover ground
truth signal x0 ∼ p(x0) added random noise ϵt ∼ N(0, I)
to desired images. To be more specific, the forward diffu-
sion process p(xT |x0) utilizes a Markov Chain that gradu-
ally mitigates x0 to xT with random Gaussian noise.

q(xt|xt−1) = N (xt|
√
1− βtxt−1, βtI) (1)

where βt ∈ (0, 1)is the noise scale. Following the noise
scheduler, βt increases as the timestep grows, and finally,
ground truth images are completely covered with noise.

q(xt|x0) =

T∏
t=1

N (xt|
√
1− βtxt−1, βtI)

= N (xt|
√
ᾱtx0,

√
1− ᾱtI)

(2)

where αt = 1−βt and ᾱt =
∏t

i=1 αi. The diffusion model
ϵθ(xt, t) is training to estimate ϵt from xt, by gradually re-
move noise from the xt. The backward process, commonly
known as

pθ(xt−1|xt) = N (xt−1|µ(xt, t),Σθ(xt, t)) (3)

2.2. Illusions and Modality

Recent advancements in diffusion models have enabled
artists and researchers to create complex illusions. For in-
stance, Mr. Ugleh repurposed a QR code-generating model
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Figure 1. Overview of the entire model of the main model architecture. This obtains two inputs to generate the image with illusions.

to create images with a global structure matching specific
templates, whereas Burgert et al. [2] used score distillation
sampling [10, 8] to create multi-view images that change
appearance based on the viewer’s angle, albeit with lower
quality and longer processing times. Geng introduced the
algorithm with simultaneously denoising multiple views of
an image. This work uses the pixel-based diffusion model
to generate the images. Our model builds on the latent diffu-
sion framework, adding a text prompt with an audio input.
Unlike Geng’s approach, which processes multiple image
views simultaneously, our model enriches the illusion gen-
eration by integrating auditory stimuli, offering new possi-
bilities for applications of modalities in the diffusion model.
This approach enhances both the text similarity and dynam-
icity of the generated illusions. Here, we used a pre-trained
VGG-based encoder to translate sound data into latent code.

3. Methods
Our goal is to make a latent diffusion model with multi-

modality. To expand the modality, we add sound as another
modality. To mitigate the artifacts of multi-view illusion
generation when using the latent diffusion model, we fur-
ther introduce a denoising block with the designed sched-
uler.

3.1. Conditioned Diffusion Model

Fig 1 is the main architecture for image processing that
integrates a latent diffusion model. In our framework, an
initial decoding block precedes the diffusion process. Im-
ages are first passed through a decoder, where they undergo
a specified transformation v. The transformed images are
then input into a latent diffusion model for further process-
ing.

Following the diffusion model, a post-processing step in-
volves applying the inverse transformation v−1 to revert the
image back to its original form. The image is then encoded
to predict the noise component, completing the cycle.

The architecture is designed for flexibility; the decoder
and encoder surrounding the diffusion model need not be
complex neural networks. Alternatives include utilizing
Discrete Fourier, cosine, and wavelet transforms as the de-
coders, with their corresponding inverse operations serving
as the encoders.

Upon further consideration, it was decided to simplify
the initial dual decoder-encoder design to avoid complica-
tions during the analysis and experimentation stages. The
replacement is a singular image processing block that di-
rectly manipulates the latent. Options for this block include
a Gaussian blurring filter to smooth the image, a set of fil-
ters that induce smooth transitions in the latent space, and
a component that suppresses high-frequency elements by
zeroing out certain coefficients post-discrete Fourier Trans-
form.

3.2. Sound data as an input

As illustrated in Fig 2, we designed the model with the
data types of the two prompts originally used as inputs for
our main model to facilitate multi-modality. This modifi-
cation involved receiving one input in the form of a text
prompt and another as audio data. Similar to the process for
text, the input audio is processed through a VGG-based en-
coder [3], which we refer to as the New Imagebind-based
Encoder [5]. This step allows us to place the data into
an embedded space. Following this, the data undergoes a
denoising step via a UNet architecture. This approach ef-
fectively integrates diverse input modalities, enhancing the
model’s capability to handle and refine multimodal data in-
puts.

3.3. Fourier Denoising

To mitigate the latent-based artifacts, we use a Fourier
denoising block. The Fourier denoising block cuts off
percentages of the Discrete Fourier Transform(DFT) co-
efficients by their magnitude and then does reconstruc-
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Figure 2. Designed model with two inputs which are in the differ-
ent domains and different modalities

tion using the deducted DFT coefficients. Previous re-
search [7] states that the latent bases evolve from low-
to high-frequency components, and hence, we make the
strength of denoising (percentage of DFT coefficients being
cut) decrease as the step goes further to stay consistent with
this finding. In our implementation, the Fourier denoising
operation is performed on each channel of the latent start-
ing at step 200 (with a total of 500 steps) with an interval of
20 steps. The cut-off percentages of DFT coefficients from
step 200 to 300 is 50%, from step 300 to 400 is 40%, and
from step 400 to 500 is 30%.

3.4. Wavelet Denoising

Cutting off the DFT coefficient matches the fact the
latent space is closely related to frequency. However,
we disregard the complex information in DFT and only
use the real information. To prevent missing information,
we further investigate a Wavelet denoising block. Inside
the Wavelet denoising block, a soft-thresholding opera-
tor is applied to every Discrete Wavelet Transform(DWT)
coefficient. Mathematically, for a DWT coefficient c,
soft(c;λ) = sgn(c) · max(0, |c| − λ) given the value af-
ter soft-thresholding with threshold λ. In our implemen-
tation, the Wavelet denoising operation is performed on
each channel of the latent starting at step 200 (with a to-
tal of 500 steps) with an interval of 20 steps. We use
Daubechies Wavelet at a level of 4. The threshold of the
soft-thresholding operator from step 200 to 300 is the 94%
percentile of the magnitude of DWT coefficients, from step
300 to 400 is the 88% percentile of the magnitude of DWT
coefficients, and from step 400 to 500 is the 82% percentile
of the magnitude of DWT coefficients.

3.5. TV Regularization Denoising

In both Fourier and Wavelet denoising blocks, some per-
centage of coefficients are set to zero, which may result in
loss of information. To prevent this problem, we choose
Total Variance(TV) regularization denoising as the third op-

CLIP Score view1 view2
Raw 0.7317 0.6527
Fourier 0.8098 0.7511
Wavelet 0.7415 0.6974
TV Reg 0.7447 0.6929

Table 1. Quantitative Results. The table records the CLIP score
of the generation from the raw model and from models with differ-
ent denoising blocks. The CLIP score of generations from models
with all three denoising blocks performs better than the raw gen-
eration.

tion of the denoising block. The total variance of a 2D im-
age x is defined as:

TV(x) =
∑
i,j

√
|xi+1,j − xi,j |2 +

√
|xi,j+1 − xi,j |2

The TV regularization denoising [1] is indeed solving the
optimization problem x̂ = argminx∈R⊭ ∥y − x∥22 + λ ·
TV(x), where y is the observed data, x is initialized as a
copy of y, and λ is a positive regularization constant. In our
implementation, we solve the optimization through Proxi-
mal Gradient Descent. The step size is 3 × 10−5, and the
number of iterations is 300. The TV regularization denois-
ing is performed on each channel of the latent starting at
step 200 (with a total of 500 steps) with an interval of 20
steps. The value of regularization term λ decreases as steps
go further: λ = 0.18 from step 200 to 300 , λ = 0.09 from
step 300 to 400, and λ = 0.045 from step 400 to 500.

4. Experiment
4.1. Quantitative Evaluation

We use the CLIP Score [9] to evaluate our text-
conditioned generation with a denoising block. The CLIP
score between an image I and text T is calculated based
on their cosine similarity in a common feature space. The
mathematical expression for the CLIP score is:

CLIP Score(I, T ) =
⟨f(I), g(T )⟩
∥f(I)∥∥g(T )∥

f(·) is the CLIP image encoder and g(·) is the CLIP text
encoder. Hence, we expected that the CLIP score would
stay at approximately the same level with and without the
denoising block. We summarized our CLIP score evalua-
tion in Table 1. Surprisingly, we find out that models with
denoising block has higher CLIP Score

4.2. Qualitative Evaluation

As illustrated in Fig 3, the denoising block helps miti-
gate the artifact and smooth the image to have better visual
quality. Fig 4 shows a interesting phenomenon in Fourier
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Figure 3. Generation with text prompts ”a painting of truck” (first
row) and ”a painting of red panda” (second row)

Figure 4. Fourier denoising with different cut-off percentage of
DFT coefficients may change the content in generation. The dif-
ference between first row and second row in cut-off percentage is
10%

Figure 5. Generation with text prompts ”an oil painting of botani-
cal garden” (first row) and ”an oil painting of house” (second row)

denoising: Fourier denoising with different percentage of
cut-off DFT coefficients may even change the content in
generation. Fig 5 shows a case that the denoising block do
not have a positive effect on the generation. The detailed
and rich texture of the botanical is deducted by the denois-
ing block.

CLIP Score view1 view2
woF 0.7258 7117
woW 0.7516 0.7190
woTV 0.7151 0.7029

Table 2. Ablation study. The table records the CLIP Score of each
denoising block without scheduling. We notice that the scheduling
of changing the scale of denoising (or strength of the regulariza-
tion) will not always lead to a higher CLIP Score. The Wavelet
denoising without scheduling of changing denoising scale is bet-
ter than Wavelet denoising with scheduled denoising scale under
CLIP Score evaluation

4.3. Denoising Scheduler Evaluation

To investigate the effectiveness of changing the denois-
ing scale as the step goes further, we evaluate the CLIP
Score of generations without changing the denoising scale.
For all of the three denoising block, denoising starts at step
200 (with total 500 steps) with interval of 20 steps. For
Fourier denoising, the cut-off percentage of the DFT coef-
ficient stays at 40%; for Wavelet denoising, the threshold is
always the 88% percentile of the magnitude of DWT coeffi-
cients; and for TV regularization denoising, the regulariza-
tion term λ stay at 0.045. We find that only Fourier denois-
ing always benefits from the scheduled denoising. The re-
sult may reflect two pieces of information. First, the change
of threshold value in Wavelet denoising and the change of
regularization strength in TV denoising can be tuned to be
better. Second, it would be better to make the change of
threshold value and regularization strength become data-
adaptive.

5. Conclusion and Limitation

In this project, we expand sound as an additional modal-
ity to generate multi-view illusions using latent diffusion
models. With the help of a denoising block, we mitigate
the latent-based artifacts in the generation. However, there
are three main limitations of this simple method. First, we
do not have enough view transformation (only rotation by
90 and 180 degrees for now) and hence the generation of a
wide range of text prompts pair is poor, i.e., the generation
conditioned on ”a painting of house plant” and ”a painting
of Albert Einstein”. Second, we naively draw equivalence
between artifacts, noise and rich texture. The botanical gar-
den generation is a typical example reflect this problematic
assumption. Third, the latent-based artifacts may also be
data-based artifacts. Since we are using a pre-trained latent
diffusion model, the lack of training data of some specific
type may also caused the artifact. To overcome this lim-
itation, a more comprehensive research is required on the
cause of these artifact, and probably adding image prior can
help with fix it.
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