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Abstract. We introduce a Schrödinger Bridge method to generate datasets
from diverse domains. This enables the collection of data for rare diseases
and limited datasets. Therefore, in this paper, we introduce Domain
Knowledge Diffusion Model (DKDM) using Schrödinger Bridge to gen-
erate rare disease images and limited data in medical imbalance datasets.
Our method demonstrates the capability to generate cross-domain gen-
eralized images for rare diseases beyond utilizing a single-domain dataset
by training the separated model with domain datasets. Also, our method
surpasses the existing Schrödinger Bridge diffusion models by using do-
main phase loss. Furthermore, we show that utilizing images generated
from our method is more competitive than training with existing meth-
ods.

Keywords: Cross-Domain Generation · Diffusion models · Data Aug-
mentation

1 Introduction

Deep learning has achieved remarkable progress in computer-aided diagnosis.[15,
27, 17, 14] Recently, numerous studies utilizing diffusion methods have demon-
strated successive success. There are two main ways to use diffusion methods in
medical imaging. Firstly, anomaly detection utilizes methods that combine de-
terministic iterative noising and denoising schemes.[24, 1, 29] Secondly, by using
rare disease data, the diffusion model generates images of these domain.[12, 5].
However, these methods show significant performance yet rely on training with
large datasets. Many attempts have been made to train the generative model
with limited data[24, 5, 13], but it still requires large datasets or only single do-
main datasets. By utilizing limited data or multi-domain datasets, training a
generative model with good quality and high fidelity seems limited. Domain
adaption and cross-domain generalization approaches show their generalization
ability across diverse datasets.[25, 4, 9] Specifically, domain adaption is a com-
monly used technique that fine-tunes generators and discriminators on target
datasets. These are usually based on the generative models. In particular, after
training the model with the source domain, a few parameters are fine-tuned,
and regularization methods are added to transfer knowledge about the target
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domain.[24, 5] However, resulting diversity is typically less semantic and pro-
duces only very similar images. Therefore, more advanced methods are required
for good quality and high fidelity. For this reason, we conducted training mod-
els with various domain datasets using the Schrödinger Bridge. This is used to
generate cross-domain generalized images to balance datasets for imbalanced
datasets. Here, we find that transferring the trained model with the source do-
main directly to target-domain knowledge results in a loss of prior knowledge. To
address problems, we utilize domain phase loss to minimize the cosine similarity
of the reconstructed image and target domain. Since similar phases are observed
in datasets in the same domain, the method of reducing loss in the domain
transfer process is meaningful in creating cross-domain data. Also, we explore
why diversity drops when utilizing diversity datasets and how to produce highly
diverse images in multi-domain datasets. To that end, we introduce Domain
Knowledge Diffusion Models(DKDM) using cross-domain generalization tech-
nique to generate rare disease images with limited data in medical imbalance
datasets. The idea behind DKDM is to learn various domain representations.
Compared to the conventional strategy, since utilizing design loss for domain
generalization, DKDM can produce high-fidelity images without catastrophic
forgetting problems for source domain datasets. Specifically, we demonstrate
that DKDM is competitive for generating images compared to existing meth-
ods. Also, When the training model utilizes the existing dataset with generated
images, we show competitive performance. Through extensive experiments, our
contributions follow that:

– Our methods demonstrate the capability to generate cross-domain gener-
alized images for rare diseases beyond utilizing a single-domain dataset by
training the model with multiple diverse domain datasets.

– Domain phase loss resolves the issue of losing prior knowledge when directly
transferring a trained model from the source domain to the target domain.

– We show competitive performance among the existing unpaired image-to-
image translation models.

2 Methods

2.1 Schrödinger Bridge (SB)

A Schrodinger bridge extension of score-based generative models (SGMs) has
been introduced to transfer from an initial distribution to a terminal distribu-
tion over time. It is closely related to probability theory and stochastic control.
To approximate score-based generative models (SGMs), [3, 22] introduce leverag-
ing Iterative Proportional Fitting (IPF) algorithm and [18, 8] introduced similar
algorithms. With the successive success of research utilizing SB, several variants
have come on to the diverse stage, such as Probabilistic Lambert Problem, in-
verse problems[16], Mean-Field Games[10], constrained transport problems[20],
Riemannian manifolds[21], and path samplers[28, 26]. [23] investigate entropy in-
terpolation between Dirac delta and noisy data with SB in the unsupervised set-
ting. Otherwise, in the supervised setting, I2SB[11] and InDI[7] used paired data
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to learn SBs between Dirac delta and data while finding the continuous path.
Recently, DDIB[19] tried to not unpaired data but concentrate two SBs between
different domain pairs data and demonstrated utility in a wide variety of transla-
tion tasks. However, to the best of our knowledge in the Medical community, the
SB problem has not been investigated between Unpaired image-to-image trans-
lation. Thus, our work endeavors to demonstrate that inherent optimal transport
properties are achievable in various aspects by utilizing paired or unpaired im-
ages. Also, our work tried to adapt various datasets to demonstrate scalability.
Our model is based on an elaborate Schrödinger Bridge, which elucidates that
SB can be articulated as a sequential integration of generators determined via
adversarial learning paradigms. More precisely, considering a partition {ti}Ni=0

of the unit interval [0, 1] with and t0 = 0, tN = 1, and x̃0 = xt0 , x̃N = xtN , we
can represent sb via the Markov chain decomposition.

p({x̃n}) = p(x̃N |x̃N−1)p(x̃N−1|x̃N−2) · · · p(x̃1|x̃0)p(x̃0) (1)

Through decomposition , we learn p(x̃i+1|x̃i) presuming we can sample from
p(x̃i) (for i = 0, . . . , N − 1). Thus, we can learn p(x̃i+k|x̃i+(k+1)) and so forth.
Consider qϕi

(x̃1|x̃i), a conditional distribution orchestrated by a DNN with pa-
rameters ϕi. This is also the denoising and generation step, which estimates the
target domain image xi. Therefore, we optimize ϕi with the arbitrary step i.

2.2 Model operations of DKDM

Model Description Our model embarks on optimizing a loss function for a
randomly selected time step ti during the training stage. The inception of the
model involves sampling an image xti from the initial domain and a correspond-
ing image from the target distribution denoted by x1. The target distribution is
signified by π1, and the details of the sampling procedure for xt will be elucidated
shortly.

The sampled image xt is subsequently processed through a transformation
function qϕ(x1|xt), yielding x1(xt), which is an estimation of the target domain
data given xt. The pairs (xt, x1(xt)) and (x1, x1(xt)) are utilized to compute the
LSB(ϕ, ti) and the Adversarial Loss LAdv(ϕ, ti). Here, LSB(ϕ, ti) measures the
discrepancy between the learned distribution qϕ and the true data distribution
in the context of a time step ti in a Markov chain. Specifically, the LSB is defined
as an expectation over the data distribution of the squared Euclidean distance
between xti and xti+1 , regularized by a term involving the entropy of the learned
distribution qϕ. The entropy component in LSB is estimated through a mutual
information estimator, leveraging the relationship I(X,X) = H(X) for a random
variable X, where I represents mutual information. The divergence in LAdv is
evaluated utilizing adversarial learning techniques, with x1 and x1(xt) serving
as the "real" and "fake" inputs to the discriminator.

Sampling Procedure The intermediate and final samples are generated
through a procedure that simulates a Markov chain, as described above, using
the transformation function qϕ. Commencing with xt, we predict the image in the
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Fig. 1. The process begins with an initial set of sample images xti . These images
are subjected to a series of transformations involving the addition of noise through
a process defined by the function qϕ. As the images pass through each step, they
become increasingly noisy, simulating a Markov chain. The images are then processed
through a stochastic gradient (S.G) operation and a backward process that aims to
recover the original image features from the noise, indicated by the function pθ(xt−1|xt).
Throughout this transformation process, several loss functions are employed.

target domain x1(xt) through iterative sampling and the application of Gaussian
noise, facilitating the generation of xtj+1 . This iterative procedure enhances the
prediction of the target domain sample, thereby refining it through the trajectory
{x1(xt) : i = 0, . . . , N − 1}.

Process Illustration Figure 1 encapsulates the generation stage of the
model, elucidating the transformation from the original domain Xti to the tar-
get domain X1(xtj ). The illustration conveys the integration of various machine
learning paradigms, including stochastic processes, adversarial training, regular-
ization, and potentially Fourier analysis, to effectuate this domain transforma-
tion.

2.3 Resolving Prior Knowledge Loss

If datasets with a very large difference between domains are generalized, plenty
of existing information on images is lost when translating input data from the
source domain to the target domain. This phenomenon occurs when new images
are filled only with information from other domains while information is put in
a specific domain. Our goal was to solve this problem. Since medical data have
biases for each data, there is a big difference between domains. We used the
Fourier transform for each dataset to show amplitude and phase. As a result, as
can be seen in the 2, it was confirmed that data belonging to the same domain
have similar amplitude and phase, and in the case of data in different domains,
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Fig. 2. We employ Fourier transformation on both the generated and target domain
images to analyze texture. The loss function applied to the model utilizes cosine simi-
larity in the Phase term, representing the texture. However, the Amplitude term is not
utilized.

the difference was found to be very large. Based on this, we designed a domain
phase loss function for optimization.

LDP =

∑
i,j Phase (X )i,j ·Avg(X̂)i,j√∑

i,j ( Phase (X )i,j)
2 ·

√∑
i,j

(
Avg(X̂)i,j

)2
(2)

where X means generated image and X̂ means Average for getting phase term
numerical value from target domains. In short, the domain phase loss function
measures the cosine similarity of the phase of the generated image and the phase
of the average target domain.
We also add regularization loss to make the final objective for DKDM. To
further refine the DKDM objective, regularization is introduced to compel the
generator network qϕ to uphold a consistency between the predicted outcome x1

and the initial state x0:

LReg(ϕ, ti) = Ep(x0,xt)Eqϕ(x1|xt) [S(x0, x1)] (3)

In this context, S denotes a scalar, differentiable function that encapsulates
a domain-specific measure of resemblance between its two inputs. Essentially, S
encodes our preconceived notion of similarity across image pairs. We can derive
the final loss function here by incorporating the previously introduced Adversar-
ial Loss and Schrödinger Bridge Loss term. Consequently, the amended DKDM
objective at time ti can be stated as:

LDKDM(ϕ, ti) = LAdv(ϕ, ti)+λDP,tiLDP(ϕ, ti)+λSB,tiLSB(ϕ, ti)+λReg,tiLReg(ϕ, ti)
(4)

This is the definitive goal within our DKDM scheme.
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3 Experiments and Results

3.1 Implementation details

Our proposed methods use Markovian discriminator in LAdv and utilize patch-
wise contrastive matching in LReg For training DKDM network for 10 epochs
with batch size 1 and Adam optimizer with B1 = 0.5,B2 = 0.9999,. We also set
λ = 0.0002 for the initial learning rate, learning decay 500, and Ldp = 0.1 for
Domain phase loss. We resized the input image 256 × 256 and normalized it into
the range [-1, 1]. For SB training and simulation, we divided the unit interval
[0, 1] into 5 uniform space intervals with uniform spacing. We adopt entropy
estimation [2] to our model. We apply the data augmentation method follow-
ing previous work. However, unlike previous studies, we applied the mentioned
settings consistently to both the Epithelium-Stroma and ISIC2019 datasets. We
used the PyTorch library with single V100 GPU to train Epithelium-Stroma and
ISIC2019 datasets, which took around 3 and 5 hours.

3.2 Qualitative Analysis

To substantiate the continual improvement of our proposed methodology in
achieving a seamless transformation of texture to the target domain, avoiding
over-fitting compared to conventional methods, we have undertaken the visu-
alization of consecutively transformed images. This visualization serves as ev-
idence for the ongoing enhancement and stability of our approach as the tex-
ture progressively evolves into the target domain without succumbing to over-
fitting issues. 3 illustrates the transformation results between the NCH and IHC
datasets, and vice versa, from IHC to NCH. Similarly, the transformations be-
tween Melanocytic and Carcinoma datasets and the reverse from Carcinoma to
Melanocytic are depicted. The degree of Style Guidance indicates the number of
iterations our model has undergone to produce the outcomes; the images on the
far left contain the most information from the original data, progressing towards
the right; they increasingly resemble the target domain. Notably, during the
testing phase, the images resembling the target domain were generated without
any target domain information, based solely on randomly sampled images from
the source domain.

3.3 Quantitative Analysis

To assess quantitative metrics, we compared the Fréchet Inception Distance
(FID) [6] scores with those of existing methods.1 The evaluation focused on the
FID scores during the conversion process from NCH to IHC and vice versa. Given
the nature of the FID score, which compares the images themselves, we observed
that the scores were relatively high, which is attributable to our dataset’s char-
acteristic of being comprised of unpaired images across different domains. Upon
comparison, it was evident that our model achieved lower FID scores than the
pre-existing UNSB model. This trend of reduced FID scores was consistent even
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NCH IHC

NCH IHC

IHC NCH
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Style Guidence +-Melanocytic Carcinoma

Melanocytic Carcinoma Melanocytic Carcinoma

Fig. 3. For qualitative evaluation of image-to-image translation results from our
DKDM, we transfer input images into different medical domain images and style im-
ages. We also show successively refining the predicted target domain image.

when the domain conversion was reversed in our experiments. These findings
corroborate the efficacy of our domain phase loss in mitigating the disparities
between domains, thereby validating its role in bridging the domain gap. Addi-
tionally, as depicted in Figure 5, it is observed that our model converges after
approximately 100 iterations of the training steps. This applies to both scenar-
ios: transforming fake images into target images and converting fake images into
real images.

Model NCH→IHC ↓ IHC→ NCH ↓

UNSB 365.38 157.16
DKDM(Ours) 307.52 102.08

Table 1. The quantitative FID score for the reconstructed images. Our model surpasses
the FID score of the state-of-the-art model UNSB

3.4 Gray-scale image to image translation

Recently, few studies have proposed diffusion models for image transfer using
gray-scale images. Therefore, we applied our proposed method to explore the
efficacy of gray-scale image to image transfer, specifically on CheXpert images,
aiming to assess its performance across unpaired images. However, Gray-scale
image transfer is limited due to the absence of color information. It is also typi-
cally composed of fine-grained disease. The experiments are shown in Fig 4.

3.5 Detailed imagery description of DKDM

DKDM can generate images that align with the target domain while preserving
certain aspects of the source domain. As depicted in Fig 5, DKDM, unlike the
state-of-the-art model UNSB, adeptly retains features of the source domain’s
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Normal Patients NormalPatients

Fig. 4. To demonstrate our proposed method well on the gray-scale image translation
task, we utilize the CheXpert dataset. In particular, we tried to transfer images from
patient data to normal data.

images while accurately producing images suitable for the target domain. This
can be attributed to the domain phase loss, which effectively minimizes the
differences between the domains. In the case of UNSB, it is noted that as the
number of evaluations increases, the distinctive features of the original source
domain gradually diminish. In contrast, our model maintains the characteristics
of the source domain well while approaching the target domain.

Style Guidence +

Source Domain Target Domain 

-

UNSB

Ours

-

Fig. 5. DKDM can be possible to iteratively enhance the anticipated image of the
target domain, allowing the model to adjust intricate elements while maintaining the
texture.

4 Conclusions

We introduce DKDM, which enhances UNSB utilizing Schrödinger Bridge(SB)
and combines SB with GAN training techniques for unpaired image-to-image
translation by adding Domain phase term loss. We demonstrated the efficacy
and prospects of DKDM by extensive experiments on the unpair domain data
or Different classes from the same dataset. Unlike existing models, we have con-
firmed that DKDM preserves the appearances from the source domain well
while generating images suitable for the target domain. We also highlight the
significance and limitations of the gray-scale image transfer task, identifying it
as a challenge that needs to be addressed in future research endeavors.
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1 Detail of datasets

We evaluate the proposed method with multiple Epithelium-Stroma, CheXpert,
and ISIC2019 datasets. Epithelium-Stroma datasets(e.g IHC and NCH) are com-
mon publicly available datasets. The datasets were collected from different meth-
ods and institutions, which caused the domain shift among them, and they were
labeled as epithelium or stroma. The IHC datasets contain 10015 histopatholog-
ical images, and NCH datasets contain a total of 8015 images. We generate styl-
ized images of the epithelium class in the IHC dataset within the NCH dataset,
corresponding to the same class. We also apply the reverse scenario. The CheX-
pert dataset compose of 14 classes with 224,319 images. Due to limitations in
incorporating all available data into the training, we opted to sample the image
for experimentation purposes. The ISIC2019 dataset has 8 classes with 25,331
images and can be found publicly. For qualitative comparison, we also utilize
the ISIC2019 dataset to demonstrate the leverage for transfer among images of
different classes within pairs that belong to the same domain.

Datasets class samples imbalance ratio domain

IHC 2 820 1.5 •
NCH 2 24,763 1.3 •

ISIC2019 8 25,331 53.8
CheXpert 14 224,316 37.9

Table 1. The details of medical datasets. We utilized IHC and NCH for the un-
paired image-to-image transfer task, while applying class-wise transfer to CheXpert
and ISIC2019.

2 Qualitative result of losses

The graph of the quantitative analysis of the loss metrics during the training
phase indicates a notable trend towards convergence, achieved at the threshold
of approximately 100 iterations. This observation suggests that the model begins
to reach a stable state where further iterations result in diminishing improve-
ments to loss reduction. Convergence in this context implies that the model has
effectively assimilated the underlying patterns within the training dataset to a
degree where it can now yield consistent predictions or outputs.

3 Limitations

Despite generating a generalized image and showing competitive performance,
our proposed DKDM still has limitations in terms of twofold. Firstly, we could
use diffusion pre-trained by large datasets. A pre-training model with large
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Fig. 1. Quantitative graph of the losses while training the models. This shows the
model almost converges from 100 iterations.

datasets is highly unlikely to cause catastrophic forgetting compared to not. Sec-
ondly, in datasets comprising fine-grained medical images (such as epithelium-
stroma and ISIC2019, etc..), the image-to-image transfer did not clearly demon-
strate the generation of distinct images. This issue arises due to variations in
individual genetic characteristics, even for the same medical condition. Addi-
tionally, our experiments aim to generate generalized images. For these reasons,
It is not sure that it will work well on other tasks(Classification, Detection, Seg-
mentation, etc..). Specifically, since the generated image and existing datasets
are different in terms of density, it is not certain whether they will improve den-
sity prediction. (e.g. segmentation). Also, when we adapt to gray-scale image
datasets, transferring texture isn’t impossible. Thus, we believe that developing
a diffusion model with universal applicability across both unpaired gray-scale
and RGB domains would be an intriguing avenue for future research.


