
Assignment 2: Meet RMA

Wonseok Oh
University of Michigan Ann Arbor

Electrical and Computer Engineering
okong@umich.edu

1. Environment Set UP

1.1. S1. Request the activation key

This works is based on the two papers [1] [2].

Figure 1. After putting the information into the Google form, we
can get the activation key from the Raisim

1.2. S2. Clone the specific raisimLib version

Figure 2. If we use the Linux machine for the task, we can put the
rasimlib folder in the local path as follows:/home/YOURNAME/.
/home/okong/rasimlib is my case.

1.3. S3.Raisim setup

Figure 3. By following the instruction in the website, we can set
up the raisim. These are added in the /.bashrc file.

2. RMA Codebase Installation and Analysis of
the Performance on A1

2.1. S2. Quantitative Testing with Benchmarks

Here we can test the benchmarks using two kinds of meth-
ods. I used the quantitative testing with Benchmarks. By
using EXPT ID 0006 (unitree A1 robot, Phase-1) in the pol-
icy section at:

https://github.com/antonilol/rl_locomotion

Also, I used the policy 10000.pt file for the testing. In the
table(figure) 4, there are the results evaluated across vari-
ous metrics: TTF, Forward Reward, Distance, Energy (i.e.,
Work), Smoothness, Ground Impact, and Success Rate.
Each of them has following definitions:
• num steps: Represents the total number of steps taken in

the simulation. This indicates the extent of the simula-
tion’s progression.

• forward r: Likely stands for ’forward reward’, suggest-
ing the reward given for the agent’s forward movement. A
higher value suggests better progression towards the goal.

• distance: The total distance moved by the agent. The
unit of measurement is not specified, but it is an important
measure of the agent’s locomotive performance.

• energy: The amount of energy expended by the agent
during the experiment. Minimizing energy usage is often
a key objective in robotic systems.

• smoothness: Indicates how smooth the agent’s move-
ments are. Lower values could imply smoother motion.

• ground impact: Measures the impact on the ground by
the agent, such as when a robot’s limb or other compo-

1



nent makes contact with the ground. Lower values may
indicate a softer impact.

• success rate: The success rate of the experiment, with
0.75 indicating that 75% of the experiments achieved
their objectives.

Figure 4. Quantitative Testing with Benchmarks for unitree A1
robot, Phase-1, policy 10000.pt

2.2. S3. Analyze the performance of the RMA on
the A1 robot

2.2.1 (a) Analysis of Phase-1 Performance

I make an experiments for the policy from 0.pt to
10000.pt 5. Interval between the policies were 2000steps.
• num steps: This metric does not show a clear trend.
• forward r:There seems to be an overall increasing trend

in forward reward, indicating potential improvement in
the model’s ability to progress forward. It starts lower
at 0.pt, increases significantly by 4000.pt, and maintains
relatively high values thereafter.

• distance: There is a clear upward trend in distance trav-
eled, with the maximum at 10000.pt. This suggests con-
tinuous improvement across checkpoints.

• energy: This does not indicate a clear trend of improve-
ment or degradation.

• smoothness: There seems to be an improvement in
smoothness after 2000.pt, with some fluctuations.

• ground impact: The trend suggests no clear improve-
ment or decline.

• success rate: There’s an overall upward trend from the
0.pt to the 10000.pt, albeit with fluctuations.

The trends are not entirely consistent across all metrics.
However, distance and forward reward seem to show an
improvement, metrics like energy, smoothness, and ground
impact do not show a clear trend of improvement. The suc-
cess rate improves and has upward trend.

Figure 5. Benchmark from policy 0.pt to policy 10000.pt

2.2.2 (b) Comparison with Phase-2 Performance

I compared the performance of the RMA on the AI robot
across two distinct phases using the provided data from
folder 0006 (Phase-1) and folder 0008 (Phase-2). Here, I
specifically look at the 0.pt and 2000.pt pretrained models
for both phases based on the fig 6. The comparison is based
on the following metrics: forward reward (forward r), dis-
tance, energy, smoothness, ground impact, and success rate.

Figure 6. Benchmark of Phase-1 and Phase-2. Policy trained num-
ber is policy 0.pt and policy 2000.pt.

Comparison of the policy 0.pt model from Phase-1 and
Phase-2:
• forward r:There’s a decrease from Phase-1 (15.64) to

Phase-2 (3.46), suggesting a lower performance in Phase-
2.

• distance: Phase-1 (3.41) shows more distance covered
than Phase-2 (1.04), indicating better performance in
Phase-1.

• energy: Improved from Phase-1 (50.60) to Phase-2
(37.42), indicating better energy efficiency in Phase-2.

• smoothness: Improved from Phase-1 (37.02) to Phase-2
(78.67), indicating a smoother performance in Phase-2.

• ground impact: Greatly reduced from Phase-1 (1.81)
to Phase-2 (0.06), which is a significant improvement in
Phase-2.

• success rate: Decreased from Phase-1 (0.54) to Phase-2
(0.15), showing a decrease in the success rate in Phase-2.

Comparison of the policy 2000.pt model from Phase-1 and
Phase-2:
• forward r: Improved from Phase-1 (17.17) to Phase-2

(25.19), indicating a higher performance in Phase-2.
• distance: There’s an increase from Phase-1 (3.47) to

Phase-2 (4.34), which suggests improvement in Phase-2.
• energy: There’s an increase in energy efficiency from

Phase-1 (56.99) to Phase-2 (50.32), which is better in
Phase-2.

• smoothness: Decreased from Phase-1 (45.56) to Phase-2
(36.95), indicating a smoother performance in Phase-2.

• ground impact: Slightly increased from Phase-1 (2.39)
to Phase-2 (0.17), still showing an improvement in Phase-
2.

• success rate: Increased from Phase-1 (0.51) to Phase-2
(0.61), indicating a better success rate in Phase-2.

2



It appears that the Phase-2 models may have been optimized
for efficiency and smoothness, possibly at the expense of
other performance metrics like success rate, especially in
the early iteration 0.pt. However, as the models progressed
to the 2000.pt iteration, there is a notable improvement in
most metrics, suggesting that the Phase-2 training may have
started to focus on enhancing overall performance.

3. Adaption to Go-1
3.1. S4. Modify the corresponding Environment

I showed that the following question’s answer with the three
figures below 7, 8, 9. The first is to convert A1 into an
environmental variable of Go1 7. The second is to show the
compile result 8. The third is the benchmark result 9. This
is the above process for Go1 as it is.

Figure 7. Convert A1 into an environmental variable of Go1.

Figure 8. The compile result

Figure 9. The benchmark result for Go1

3.2. S5. Comparing the performance/behavior dif-
ferences between Phase-1 and Phase-2

3.2.1 (a) Finding training trend for each loss term

Model is trained in 1200 iterations. Figure 10 is the result
of the convergence until 1200 iterations. The graph shows
two loss terms: the ’prop mse loss’ in blue and the ’geom
mse loss’ in orange. Analyzing the graph, we can observe
the following trends and characteristics for each loss term:
Prop mse loss: This term starts at a high value and shows
a steep decline within the first 50 iterations, indicating a
rapid initial improvement. After this sharp decrease, the
loss value continues to drop at a slower rate, gradually ap-
proaching closer to 0. The trend suggests that the prop mse
loss has a fast convergence rate initially, but it plateaus as
it reaches a lower loss value, which is common in training
neural networks.
Geom mse loss: Similar to the prop mse loss, this term also

begins with a high value and decreases quickly within the
first few iterations. It continues to decline at a steady rate
and appears to be converging more faster than the prop mse
loss. It can be seen that both loss functions almost converge
near 200. However, it can be seen that Geom mse loss al-
ready converges at a much faster iteration than Prop mse
loss. In addition, the value at 1200 iteration also shows that
Prop mse loss is much larger than that of Geom mse loss.
Although it seems to have converged, this means that Prop
mse loss has challenges that are more difficult to converge.
This can be seen that Prop mse loss is a more crucial loss
term for Phase-2.

Figure 10. The graph of the training losses

3.2.2 (b) Phase-1 A1 & Go-1, Phase-2 A1 & Go-1

The analysis focuses on the comparative performance of the
RMA across two AI models, A1 and Go-1, without any spe-
cific modifications to the training strategy. 11
Phase-1 Comparison At 2000.pt (A1) and 1200.pt (Go-1):
• Forward Reward: The A1 model has a forward reward of

17.17, while the Go-1 model has a higher forward reward
of 25.55, suggesting Go-1 performs better in this metric.

• Distance: Both models cover a similar distance, with A1
at 3.47 and Go-1 at 4.56, again indicating a slightly better
performance from Go-1.

• Energy: The energy metric is higher for A1 (56.99) com-
pared to Go-1 (49.36), indicating Go-1 is more energy
efficient.

• Smoothness: A1 has a smoothness value of 45.56,
whereas Go-1 is lower at 33.35, indicating that Go-1 op-
erates smoother.

• Ground Impact: A1’s ground impact is at 2.39 compared

3



to Go-1’s 0.21, showing Go-1 has a significantly lower
impact, which is generally preferred.

• Success Rate: A1 has a success rate of 0.51, and Go-1 has
a higher rate of 0.64, indicating Go-1 achieves its objec-
tives more frequently.

Phase-2 Comparison At 2000.pt (A1) and 1200.pt (Go-1):
• Forward Reward: A1’s forward reward slightly decreased

to 16.20, while Go-1 also decreased to 24.58; both have
seen a decrease, but Go-1 maintains a higher reward.

• Distance: A1’s distance increased to 3.78, whereas Go-
1’s decreased to 4.23; this suggests that Go-1’s advantage
in distance covered may be reducing.

• Energy: A1’s energy increased to 51.63, and Go-1’s to
49.36; both models have seen a decrease in energy effi-
ciency, but Go-1 remains more efficient.

• Smoothness: A1’s smoothness decreased to 41.73, and
Go-1’s decreased as well to 31.31; Go-1 retains a
smoother operation.

• Ground Impact: A1’s ground impact slightly increased to
3.46, whereas Go-1’s increased to 0.21; Go-1 maintains a
much lower impact.

• Success Rate: A1’s success rate increased to 0.56, and
Go-1’s slightly decreased to 0.59; both models have a
high success rate, but Go-1’s rate has slightly reduced.

The Go-1 model generally outperforms the A1 model across
most metrics in both phases. Notably, the Go-1 model
exhibits a higher forward reward, more distance covered,
greater energy efficiency, smoother operation, lower ground
impact, and a higher success rate compared to the A1
model. In phase-2, while both models experience a decrease
in forward reward and smoothness, Go-1 still maintains its
superior performance over A1. However, the gap between
the models seems to be closing in terms of distance and
success rate. This might be that Go-1’s architecture or its
pretrained model inherently suits the benchmarks better, or
perhaps the metrics favored by Go-1 are more aligned with
the tasks it is being trained to perform.

Figure 11. The benchmark of Phase-1 A1 & Go-1, Phase-2 A1 &
Go-1

References
[1] Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Ma-

lik. RMA: Rapid motor adaptation for legged robots. In
Robotics: Science and Systems, 2021.

[2] Antonio Loquercio, Ashish Kumar, and Jitendra Malik.
Learning visual locomotion with cross-modal supervision. In
2023 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 7295–7302. IEEE, 2023.

4



Assignment 4: Fine-tuning RMA

Wonseok Oh
University of Michigan Ann Arbor

Electrical and Computer Engineering
okong@umich.edu

1. Fine-tuning on Custom Environments

1.1. S1. Shift the terrain/robot-centric physical
training parameters to include part of the test
range

In this assignment, the task involves shifting the
terrain/robot-centric physical training parameters to include
parts of the test range without fully covering the test range
utilized in Homework 3. By starting with a pre-trained
phase-1 policy from the GO-1 (located in the 0009/ Google
Drive folder), the instruction was to keep this phase-1 pol-
icy fixed while only fine-tuning a new phase-2 policy within
the modified environment.

Evidently, ‘dgain‘ values were adjusted to span new
ranges. These adjustments were made to evaluate the
benchmark performances within various ranges, such as
(0.3, 0.35), (0.35, 0.4), (0.6, 0.8), (0.8, 0.85), and (0.8,
0.9), based on the outcomes of testing these parameters. To
avoid exceeding the test range and to establish a baseline,
the ‘dgain‘ range was reset to (0.4, 0.6), a range previously
identified for yielding positive results.

Additionally, the ‘fractalLacunarity‘ parameter was ma-
nipulated by altering its values to 1.5, 2, and 2.5 to observe
the effects of these changes. Initially, experiments were
conducted with ‘fractalLacunarity’ set to 1.5.

The assignment asked whether fine-tuning only the adap-
tation module suffices and whether this approach might lead
to model forgetting issues in ’head scenarios,’ akin to head
classification issues discussed in reference [5].
Comparison Methodology: The comparison involved
evaluating both the pre-trained and fine-tuned phase-2 poli-
cies under identical conditions, which included diverse
‘again‘ ranges and variations in ‘fractalLacunarity.‘ Perfor-
mance metrics such as TTF, Forward Reward, Distance,
Energy (i.e., Work), Smoothness, Ground Impact and Suc-
cess Rate served as benchmarks. While the fine-tuned pol-
icy exhibited superior adaptability in certain specific condi-
tions introduced during the fine-tuning process, it underper-
formed in a broader range of scenarios compared to the pre-
trained policy. This discrepancy was especially pronounced

in environments that were well-handled by the original pol-
icy but were not explicitly considered during the fine-tuning
phase.

Figure 1. Performance of the pre-trained phase-2 policy from the
GO-1

Fine-tuning Results and Analysis: I performed fine-
tuning on the model by varying the learning rate and num
learning epochs. I tested with learning rate values of 5e-
3, 0.01, 5e-2, 0.1, and 5e-1 and changed the num-mini-
batches size from 2 to 4 to 8 to see the results. Upon fine-
tuning the phase-2 policy with the phase-1 policy remaining
static, it was anticipated that modifications to the adapta-
tion module would improve the robot’s interaction within
the altered simulation environment. This method was in-
tended to boost the system’s adaptability without the need
for entirely retraining the base policy. However, the out-
come highlighted an unexpected shift; the robot’s perfor-
mance did not uniformly improve across the modified sce-
narios. In some cases, the fine-tuned model struggled to
replicate the adaptability and performance levels achieved
by the original phase-2 policy, particularly in environments
that the robot had previously navigated with ease.

Figure 2. Performance of the Fine-tuned Results of the new fine-
tuned phase-2 policy. With learning rates and number of mini-
batch size

1



Conclusion: The experiment set out to enhance the robot’s
adaptability through fine-tuning, yet the findings pointed to
a significant challenge: achieving an optimal balance be-
tween specialization and generalization. The fine-tuning
of the adaptation module, although successful in tailoring
the robot’s responses to specific environmental changes,
resulted in a reduction of its overall versatility. This
underscores the complexity of fine-tuning AI models for
tasks like robotic locomotion, where adaptability should
not come at the expense of losing proficiency in previously
learned behaviors. It is imperative to develop fine-tuning
strategies that augment the model’s capabilities without di-
minishing its existing strengths, thus preserving its robust-
ness across a diverse array of scenarios.

1.2. S2. Comparing the performance of the pre-
trained phase-1 policy to the finetuned phase-
2 policy

Figure 3. Performance of the Results of the pre-trained phase-1
policy. With the same environment settings

When comparing the pre-trained phase-1 policy to the
fine-tuned phase-2 policy, I also analyzed their performance
based on the output data, which encompasses seven bench-
mark metrics: Time to Fall (TTF), Forward Reward, Dis-
tance, Energy (Work), Smoothness, Ground Impact, and
Success Rate.
Analysis of Pre-trained Phase-1 Policy: The phase-1 pol-
icy shows a consistent pattern of performance across the
metrics. Notably, the Success Rate averages around 0.64,
indicating a reliable completion rate of the assigned tasks.
The Energy metric, which sits at approximately 53.029,
suggests that the robot operates with a high degree of ef-
ficiency. In addition, the Smoothness and Ground Impact
metrics are at 32.61 and 2.048, respectively, indicating a
balance between fluid motion and minimal terrain impact.
This balanced performance implies that the robot maneu-
vers with controlled and efficient movements, which min-
imizes energy expenditure and ground impact while main-
taining a decent success rate.
Analysis of Fine-tuned Phase-2 Policy: Upon inspection
of the fine-tuned phase-2 policy data, there is a slight de-
crease in performance across several metrics when com-
pared to the phase-1 policy. The Success Rate, for example,
fluctuates with an average below that of the phase-1 policy,
which may signal inconsistencies in task completion. The
Energy and Ground Impact values are higher on average,
suggesting less efficient energy use and potentially harsher
interactions with the terrain. These metrics reflect a robot
that, while still capable, may not navigate its environment

as effectively after fine-tuning.
Comparison and Discussion: When directly compar-

ing the two policies, it becomes evident that the pre-trained
phase-1 policy slightly outperforms the fine-tuned phase-
2 policy, especially in terms of Success Rate and energy
efficiency. The phase-1 policy appears to be more robust
in generalized scenarios, maintaining performance even as
task complexity increases. In contrast, the fine-tuned phase-
2 policy, despite being optimized for specific conditions,
shows diminished generalization, which can be detrimental
in varied or unpredictable environments.

Conclusion: The data suggest that while fine-tuning has
targeted improvements in certain areas, it has inadvertently
led to a slight regression in the overall adaptability and ef-
ficiency of the robot. This phenomenon could be a mani-
festation of the model forgetting problem, where the robot
becomes overly fitted to the new conditions and loses its
previously acquired broader capabilities. The inclusion of
these findings and analyses in the report will provide a com-
prehensive view of the implications of fine-tuning strategies
on robotic adaptation and the delicate balance required be-
tween specialization and generalization. This can be seen
as showing a conclusion similar to the situation pointed out
above.

Figure 4. This is the result of experiments conducted with three
numbers of mini-batches and five different learning rates. The y-
axis maximum is the value of the control group we aim to compare
against, which is the pre-trained phase-1 policy. From the graph,
while it can be observed that the values are generally small, it is
evident that similar success rates can be achieved in cases where
fine-tuning is performed effectively.

2. Fine Tuning Phase 1 and 2 and Latent Be-
havior Visualization

2.1. Fine-tune a new phase-1 and phase-2 GO-1 pol-
icy

I conduct a comprehensive analysis to determine the effi-
cacy of fine-tuning the Phase 1 policy on the GO-1 robot’s
performance across various environments and to assess the
necessity of such fine-tuning for improving generalization
performance for this part.
Comparative Analysis: 1. TTF: Both in-domain and out-
domain data for Phase 1 and Phase 2 exhibit fluctuations

2



in TTF. However, a more consistent TTF in Phase 2, es-
pecially in out-domain conditions, indicates a more robust
policy able to handle diverse environmental changes, thus
showing an improvement in generalization.

2. Forward Reward: The forward reward is indicative of
the policy’s ability to move the robot efficiently towards its
target. Here, Phase 2 demonstrates a higher forward reward
in both in-domain and out-domain tests compared to Phase
1, suggesting an enhanced capacity for effective movement
strategies post-fine-tuning.

3. Distance: The traversed distance metric is critical for
assessing the locomotion. In both domains, Phase 2 poli-
cies have not shown a significant improvement over Phase
1, suggesting that the fine-tuning has had a limited impact
on this specific aspect of locomotion.

4. Energy (Work): Energy efficiency is paramount. In
the out-domain tests, Phase 2 shows a slight improvement
in energy usage compared to Phase 1, pointing towards a
fine-tuned policy that better manages energy consumption.

5. Smoothness: The smoothness of movement often
correlates with mechanical efficiency. The data reveal that
Phase 2 policies maintain comparable levels of smoothness
to Phase 1, indicating that the fine-tuning process has not
compromised the quality of movement.

6. Ground Impact: A lower ground impact is benefi-
cial for the operational longevity of the robot. Phase 2, es-
pecially in out-domain tests, records lower ground impact,
suggesting that the policy has successfully learned to inter-
act with a range of surfaces more gently.

7. Success Rate: Success rate directly measures the pol-
icy’s effectiveness. There is a slight increase in success rate
for Phase 2 in out-domain tests, although in-domain tests do
not show a marked difference, again highlighting the posi-
tive effects of fine-tuning for generalization.
Performance Fluctuation Analysis: In examining the fluc-
tuation in performance metrics, there is evidence of stability
in Phase 2’s performance in out-domain conditions, which
underscores the benefits of fine-tuning. The relatively stable
success rate and improved forward reward across untrained
scenarios indicate that the Phase 2 policy is better general-
ized than Phase 1.

Necessity of Phase-1 Fine-Tuning: Given that Phase 2
policies show consistent or improved metrics in out-domain
conditions, it’s indicative that fine-tuning Phase 1 was an
effective step towards enhancing the model’s generalization
capabilities. The Phase 1 fine-tuning process seems to have
laid a foundation that allows Phase 2 to build and refine
further, leading to policies that perform better across unseen
environments.

Conclusion: The fine-tuning of Phase 1 has proven ben-
eficial for the generalization performance of the GO-1 robot
policies. Phase 2 exhibits enhanced performance, particu-
larly in handling out-domain conditions, which is essential

for deploying robots in real-world, unpredictable environ-
ments. The benchmark metrics suggest that fine-tuning has
led to improvements in adaptability without sacrificing effi-
ciency or operational smoothness.

Figure 5. Fine-tuned in-domain phase-1 benchmark result

Figure 6. Fine-tuned in-domain phase-2 benchmark result

Figure 7. Fine-tuned out-domain phase-1 benchmark result

Figure 8. Fine-tuned out-domain phase-2 benchmark result

3



Figure 9. As above, it is a success rate plot result for four cases.
In order, it shows the results of the fine-tuned in-domain phase-1
benchmark result, fine-tuned in-domain phase-2 benchmark result,
fine-tuned out-domain phase-1 benchmark result, and fine-tuned
out-domain phase-2 benchmark result.

2.2. Visualize the z-latent representation when be-
having in in-domain/out-of-domain terrains

In Assignment 3, the results were obtained as follows.
These results include A1 w/o adapt (blue), A1 w/ adapt
(green), Gol w/o adapt (red), and Gol w/ adapt (purple)
TSNE plots. The overlaps suggest that Gol w/o adapt fea-
tures tend to be dissimilar to the other quadruped models,
which could be due to the morphology, making it difficult
to estimate the environmental parameter at that point. From
Assignment 3, it was confirmed that adjusting the variable
fractalLacunarity yields results as seen (the results of hw3
were received from the gsi).

Figure 10. Visualize the z-latent representation when behaving in
in-domain/out-of-domain terrains in the pre-trained results

I add the following code to find the values of the latent-z.

Figure 11. Added code to find the latent-z

3. Explore another Fine-tuning Strategy

Explicit Inductive Bias for Transfer Learning with Convo-
lutional Networks Concept: The idea is to introduce prior
knowledge into the convolutional layers that make the net-
work predisposed to learn certain features that are beneficial
for the task at hand.

Integration Approach: For terrains adaptation, an induc-
tive bias might be to focus on textural and shape features
that are indicative of different terrains. This can be done by
pre-training the convolutional layers on datasets that con-
tain a variety of textures and shapes similar to the terrains
the robot will encounter, then freezing these layers during
fine-tuning.

Figure 12. Fine-tuned plot result of Explicit Inductive Bias for
Transfer Learning with Convolutional Networks

Overcoming Catastrophic Forgetting in Neural Networks
Concept: Catastrophic forgetting occurs when a network
forgets previously learned information upon learning new
information. This is especially problematic in continual
learning settings.

Integration Approach: A common technique to mitigate
this issue is Elastic Weight Consolidation (EWC), which
slows down learning on certain weights based on their im-
portance to previously learned tasks.

4



Figure 13. Fine-tuned plot result of Overcoming Catastrophic For-
getting in Neural Networks

Figure 14. Fine-tuned out-domain phase-2 benchmark result

In the first method, we specifically tailor the network to
be sensitive to terrain-related features by pre-training on a
texture and shape-rich dataset. The inductive bias is intro-
duced by freezing the weights of the convolutional layers,
ensuring that these layers act as feature extractors during
fine-tuning.

In the second method, the EWC technique is used to pre-
serve the performance on the previous tasks (e.g., walking
on known terrains) while continuing to learn new tasks (e.g.,
new terrains). The ewc-loss term penalizes changes to im-
portant weights, preventing catastrophic forgetting.

References

5



Assignment 5: From RMA to CMS – Tailoring Visual info

Wonseok Oh
University of Michigan Ann Arbor

Electrical and Computer Engineering
okong@umich.edu

1. Workspace Set Up

1.1. ROS Noetic Installation

1.1.1 S1. Ubuntu version in 20.04

The shared desktop is in Ubuntu version 22.04

1.1.2 S2. Use Conda to install RoboStack

Use Conda to install RoboStack. It is a bundling of the ROS
for Linux, Mac, and Windows using the Conda package
manager. Please refer to https://robostack.github.io/ Get-
tingStarted.html for more conceptual details and instruc-
tions for installing ROS-1.

Figure 1. Website and the installation guide of Robostack

(a): I activate the installed environment (for example,
your environment is named ros env) via mamba. The result
can be found in Fig 2.

(b): For executing rivs, we need a different desktop. By
using the existing desktop, we cannot get a suitable result
for (b). (I used the 141.212.106.149)

Figure 2. Run result of the roscore

1.2. LCM Installation

1.2.1 S1. Installing dependencies. Before setting up
LCM, install Lua, Java, and Go via conda

I used (a) For Lua: conda install conda-forge::lua, (b) For
Go: conda install anaconda::go, (c) For Java: conda install
conda-forge::openjdk these three commands to install the
dependencies.

1.2.2 S2. Installing LCM

We need to follow the steps as follows. (a) Download and
place lcm package via: cd git clone https://github.com/lcm-
proj/lcm cd lcm (b) Compile lcm: cmake . sudo make install
(c) Test if lcm is correctly installed via running: lcm-gen
–version. After that, we should link lcm-1.5 from /usr/share
like Fig 3

Figure 3. Linked picture of lcm-1.5 from /usr/share

If we execute the final result, then we can get the output

1



as Fig 14.

Figure 4. Output image of lcm-gen –version. We can test lcm’s
version like this figure

1.3. CMS Set Up

1.3.1 S1. Pytorch and development packages installa-
tion

Based on your computing platform, install a suitable Py-
torch version. We install Pytorch 2.2.1 with CUDA 12.1.
Refer to Section 1 in README-1 for concrete commands.

Figure 5. This figure is the figure that displays the installed result
of the pytorch and development packages

1.3.2 S2. Libtorch installization

Download a suitable zip file from https://pytorch.org/get-
started/locally/. Unzip the package and place the libtorch
under your conda-ros environment

Figure 6. Placing the libtorch under the conda-ros env

1.3.3 S3. Libtorch installization

Use catkin tool to compile CMS environment. Refer to
Section-2 in README-1 for concrete commands and mod-
ifications.

Figure 7. Identification Key of my id ed25519

Figure 8. Identity added result

Figure 9. I registered my ssh key in my GitHub account

Figure 10. Cloning the dependencies which is ag-
ile locomotion/dependencies.yaml

2



Figure 11. Final output of the complied CMS environment

2. Fine-tune the Vision Predictor

2.1. Download the dataset and move it

Download the dataset and put it under your
/cms ws/catkin cms/src/agile locomotion/data/ path.

Figure 12. Put the download data into /cms ws/catkin
cms/src/agile locomotion/data/ path.

2.2. Modify the training config

Figure 13. Modify the training config under your ‘catkin
cms/src/cms/visual locomotion/learning‘ path with changing load
ckpt to True, ckpt file to model’s path

2.3. Final training of the model

Figure 14. Training process of the model in provided dataset

The last part of the report is to make the converging plot
of the loss. I used Validation loss to get the plot of the train-
ing model.

Figure 15. Validation loss plot of training

Due to CUDA’s characteristics not aligning well with my
needs, I opted to run training on CPU. During this process, I
encountered a recurring issue where the training would halt
midway. To address this, I saved the validation loss data
into a CSV file and subsequently generated a graph from
this data. Through this method, I was able to carry out ap-
proximately 720 training iterations, and it was evident that
convergence occurred within the first 100 steps. This is
displayed in the Fig 15. This suggests that the model is
capable of rapidly adapting to new data, a desirable char-

3



acteristic when fine-tuning for performance in novel visual
environments. Moreover, the rapid convergence indicates
a potentially robust integration of proprioceptive and visual
information, allowing the model to generalize well from the
training data. Further analysis would be necessary to evalu-
ate how this translates to practical applications and whether
the model’s performance is consistent across diverse sce-
narios. This is to be investigated using the actual quadruped
robot in the last assistance.

4



EECS598 Final HW

Zhengjie Xu, Hanxi Wan, Wonseok Oh, Elvin Yang

April 2024

1 Introduction

1.1 Workspace Set Up

1.1.1 Connecting GO-1 to the Internet

Figure 1: Successful connecting to the internet

1.1.2 Workspace Installation

Please refer to Figure 2. As we can see, the workspace is configured and built
correctly.

2 Real-world Evaluation

In this section, our trained policy is tested in various real-world environments.
To evaluate the robot’s adaptability and robustness, we qualitatively compared
our policy’s results with Go-1’s built-in MPC+IK algorithm.

We designed a series of different terrains to test the robot’s abilities. These
terrains include:

• Sand

• Sand with rocks

1



Figure 2: Successful catkin build of the workspace

• Half and half: where the robot’s left and right legs are on different terrains,
e.g., grass and sand.

• Uphill: where the robot climbs a hill with slippy sand on the surface.

• Up/Down stairs.

To test the robot’s performance in these environments, we manually con-
trolled its velocity and yaw angle using a joystick.

The evaluation videos can be found in the following link: https://docs.

google.com/presentation/d/1C3ed4iqJyF-Y0h46ZnzuxhPuRl4O1pEmbMjD_HdgLDc.Subsequently,
we will analyze the performance on each terrain.

• Sand: Comparatively, the built-in controller achieves higher speeds than
our policy. While sand presents a slippery surface, the terrain remains
mostly flat, ensuring stability for both policies. The order of terrains
doesn’t significantly influence the robot’s performance.

• Sand with rocks: The built-in controller is not able to go over the rock
and we have to go around the rock, while our policy is able to navigate
through them directly. However, for some large rocks, our policy encoun-
ters difficulty. The order of terrains doesn’t significantly influence the
robot’s performance.

• Half and Half: Both the built-in controller and our policy are able to
adapt to different terrains. The order of terrains doesn’t have a significant
influence on the robot’s performance.

2

https://docs.google.com/presentation/d/1C3ed4iqJyF-Y0h46ZnzuxhPuRl4O1pEmbMjD_HdgLDc
https://docs.google.com/presentation/d/1C3ed4iqJyF-Y0h46ZnzuxhPuRl4O1pEmbMjD_HdgLDc


• Uphill: The hill is so steep and slippy that none of the policy is able to
climb to the top. Our policy goes further compared to the built-in con-
troller, showing its better performance in adapting to different terrains.
The order of terrains doesn’t significantly influence the robot’s perfor-
mance.

• Up/Down stairs: Both policies successfully go up or down stairs, yet our
policy exhibits notably faster and smoother traversal compared to the
built-in policy. The order of terrains doesn’t significantly influence the
robot’s performance. Figure 3 and 4 show the motion of robot when going
up the stairs.

Figure 3: Up Stairs w/ Built-in Controller.

3



Figure 4: Up Stairs w/ Our Policy.

4


	. Environment Set UP
	. S1. Request the activation key
	. S2. Clone the specific raisimLib version
	. S3.Raisim setup

	. RMA Codebase Installation and Analysis of the Performance on A1
	. S2. Quantitative Testing with Benchmarks
	. S3. Analyze the performance of the RMA on the A1 robot
	(a) Analysis of Phase-1 Performance
	(b) Comparison with Phase-2 Performance


	. Adaption to Go-1
	. S4. Modify the corresponding Environment
	. S5. Comparing the performance/behavior differences between Phase-1 and Phase-2
	(a) Finding training trend for each loss term
	(b) Phase-1 A1 & Go-1, Phase-2 A1 & Go-1


	9db376cc-54e8-461b-b549-c90dec8106ad.pdf
	. Fine-tuning on Custom Environments
	. S1. Shift the terrain/robot-centric physical training parameters to include part of the test range
	. S2. Comparing the performance of the pre-trained phase-1 policy to the finetuned phase-2 policy

	. Fine Tuning Phase 1 and 2 and Latent Behavior Visualization
	. Fine-tune a new phase-1 and phase-2 GO-1 policy
	. Visualize the z-latent representation when behaving in in-domain/out-of-domain terrains

	. Explore another Fine-tuning Strategy

	996bbb59-2772-4888-a3f0-004af7eae6ff.pdf
	. Workspace Set Up
	. ROS Noetic Installation
	S1. Ubuntu version in 20.04
	S2. Use Conda to install RoboStack

	. LCM Installation
	S1. Installing dependencies. Before setting up LCM, install Lua, Java, and Go via conda
	S2. Installing LCM

	. CMS Set Up
	S1. Pytorch and development packages installation
	S2. Libtorch installization
	S3. Libtorch installization


	. Fine-tune the Vision Predictor
	. Download the dataset and move it
	. Modify the training config
	. Final training of the model


	3ad29185-0696-488b-bc47-204f3b5a017b.pdf
	Introduction
	Workspace Set Up
	Connecting GO-1 to the Internet
	Workspace Installation


	Real-world Evaluation


