
Hearing Hands: Generating Sounds from Physical Interactions in 3D Scenes

Anonymous Author(s)

Scratching chair Hitting chair

Hitting table Patting table

Scratching tableKnocking on table

Figure 1. What sound does this object make when you strike it with your hand? We capture 3D scene reconstructions that can be
used to simulate the sound that would result from a given hand motion. A human captures a 3D scene using Gaussian Splatting [20],
then manipulates objects in the scene with their hands, obtaining a sparse set of action-sound pairs. We use these examples to train a
rectified flow model to map 3D hand trajectories at given position in a scene to a corresponding sound. At test time, a user can query with
an arbitrary 3D hand action and the model will estimate the resulting sound. Here we show several captured hand and audio pairs (with
representative video frames). Please refer to our supplementary material for video and audio results.

Abstract

We study the problem of making 3D scene reconstruc-
tions interactive by asking the following question: can we
predict the sounds of human hands interacting with a 3D
reconstruction of scene? We focus on human hands since
they are versatile in their actions (e.g., tapping, scratch-
ing, patting) and very important to simulate human-like
avatars in virtual reality applications. To predict the sound
of hands, we train a video and hand-conditioned rectified
flow model on a novel dataset of 3D-aligned hand-scene
interactions with synchronized audio. Evaluation through
psychophysical studies shows that our generated sounds
are frequently indistinguishable from real sounds, outper-
forming baselines lacking hand pose or visual scene infor-
mation. Through quantitative evaluations, we show that
the generated sounds accurately convey material properties
and actions. We will release our code and dataset to sup-

port further development in interactive 3D reconstructions.

1. Introduction
Today’s 3D reconstruction systems [20, 31, 36, 38] produce
models that, while visually impressive, largely represent
scenes as rigid collections of surfaces and volumes. Miss-
ing from these representations is an ability to convey physi-
cal interaction, such as what would happen if we struck an
object with our hands. Modeling the results of actions like
these is a core challenge in a variety of applications, ranging
from AR/VR to robotics.

An emerging line of work has captured different as-
pects of physical interaction, particularly by adding action-
conditioned dynamics of the scene’s objects and modeling
physics, resulting in models that can open and close a mi-
crowave, operate scissors, or animate an object [18, 22, 23,
45, 48]. While these approaches have been effective, they



primarily focus on the visual and structural changes that ob-
jects undergo, and may not always be applicable to all ob-
jects, such as those that do not articulate or deform.

We focus instead on an aspect of interaction for 3D re-
construction that is complementary to these approaches:
predicting the sound that an action would make if it were
performed in a scene. Beyond making scenes more immer-
sive and the interaction more realistic, studying the sounds
of actions could provide a more complete understanding of
the scene, beyond what’s accessible from only its visual ap-
pearance [19, 35]. For instance, the sound we obtain from
interacting with a surface can tell us whether it is hard or
soft, smooth or rough, and hollow or dense. In addition,
by predicting sound, one can implicitly model highly dy-
namic effects, such as vibrations or deformations of ob-
jects [6, 7, 51].

We aim specifically to create 3D reconstructions that en-
able us to predict what sounds a human hand will make
when it interacts with the scene. We choose to parameter-
ize our actions using hands, rather than alternatives such
as drumstick [35] or hammer hits [13], since they can exe-
cute a highly diverse range of actions by hitting, scratching,
and manipulating objects. Hand sounds are also crucial for
simulating interactions that a human might make in a vir-
tual world application [33]. Finally, the actions that a hand
makes can easily be modeled using trajectories of 3D hand
models, which can easily be captured using ordinary video
cameras, without special equipment [14, 37, 42].

Accurately simulating the sounds of hand motions can
be a challenging task. In principle, one could exhaus-
tively collect the sounds of actions for each scene and di-
rectly include sound encoding into the 3D reconstruction.
To avoid such a tedious and time-consuming procedure,
we propose leveraging the correlation between a material’s
visual appearance and the sound it generates upon inter-
action [10, 35, 51]. In contrast to vision-to-sound work,
however, we are interested in generating the sound of user-
specified simulated interactions (Fig. 1), whose visual ap-
pearance might not be sufficient for off-the-shelf video-to-
sound models [4, 17, 28, 46, 52]. Therefore, we collect
a new annotated dataset of real-world interaction videos
paired with ground-truth sounds. From the videos, we pro-
duce “simulated” interactions by lifting hand poses to the
same 3D space of a Gaussian Splatting reconstruction [20]
of the scene (Fig. 1). This allows, by design, to remove
body occlusions from the training data (Fig. 5). In addi-
tion, it enables 3D-consistent data augmentation by gener-
ating different views of the same interaction. The result is a
novel dataset of sound-annotated dataset of 3D hand-scene
interactions. We use such dataset to train a model based
on rectified flow [27, 46] that, from a sequence of 3D hand
poses and visual content from the scene, can generate the
sound resulting from the hand’s motion (Fig. 1).

We evaluate our model in diverse indoor and outdoor real
scenes. We design a psychophysical study to understand
how often human subjects misclassify generated for real
sounds. The results of the study indicate that the sounds
generated by our approach are approximately 40% of the
time misclassified for being real. In addition, our approach
is significantly better than baselines, which do not use 3D
hand poses or visual information about the scene. Finally,
we show qualitative results indicating that generated sounds
convey rich information about the scene’s physical proper-
ties, e.g., the materials present in the scene and a notion of
the relative distance of objects from the camera’s viewpoint.

Overall, the capabilities of our approach indicate a
promising path forward to make 3D reconstruction more
realistic, immersive, and interactive. Beyond computer
graphics, our approach could have large implications in
robotics applications by offering a simple way to create
photo-realistic multimodal simulators. To make our results
accessible, we will release code and data upon publication.

2. Related Work

Multimodal 3D scene reconstruction. A variety of recent
works augment 3D reconstructions with other modalities.
LERF [21] distills CLIP [39] features into a NeRF [31],
which can be used in downstream tasks such as 3D visual
grounding [50] and task-oriented grasping [40]. Object-
Folder [11–13] constructs multimodal representations for
objects. However, they only consider small object-level re-
constructions of rigid objects that can be captured with a
special apparatus (e.g., a turntable) and are limited to simple
impact sound. In contrast, our goal is to produce scene-level
reconstructions and to support complex actions represented
by hand motions. Tactile-augmented radiance fields [8] reg-
ister sparse tactile signals into the 3D space, allowing one
to query how a given 3D location would feel if touched. We
consider sound instead of touch, and crucially we do not
treat sound as an intrinsic property of a surface (like they
do with touch). Instead, it is a function of the action that
is applied to the scene, which is specified via a 3D hand
trajectory.

Material properties in 3D scene reconstruction. An-
other line of works focuses on integrating dynamics into 3D
scene representations. Early work [7] used modal models
to simulate deformation. D-NeRF [38] augments a NeRF
with a displacement field, which adds temporal information
to the NeRF. Recently, PhysGaussian [48] uses explicit 3D
Gaussian Splatting [20] to model the dynamic behaviors,
and VR-GS [18] further develops a dynamics-aware inter-
active Gaussian Splatting representation. Like these works,
we model how a scene will react to a physical interaction.
However, we focus on hand-based actions and predict sound
rather than visual deformation. Sound prediction provides



a complementary way to analyze physical properties, es-
pecially in cases where visual deformation is not available
(such as for hard surfaces).

Video-to-audio generation. There have been many ap-
proaches for synthesizing audio from visual or language in-
puts. Early work predicted simple speech from vision [32].
Our approach is closely related to work that generates sound
as a way to understand material properties [10, 35, 51].
Early work in this area predicted sound from videos of a
drumstick striking objects [35]. In contrast, our input is a
3D trajectory of a hand, allowing us to query the model with
user-specified actions at test time (without need for a video
input), we trained with many samples within a single scene,
and we use 3D constraints, such as to obtain a clear view
of the action and materials. Later work used more powerful
generative models for conditional audio generation, such as
autoregressive models [52], GANs [4], and VQ-GANs [17].
Recent work uses diffusion models. Diff-Foley [28] repre-
sents the video using a joint audio-visual embedding [1, 34]
from the video and generates a sound using latent diffusion.
Frieren [46] uses rectified flow matching [27] for better gen-
eration quality and efficiency. Our audio generation module
is based on the Frieren’s rectified flow matching, but we use
conditional information from a sequence of 3D hand poses
and visual content extracted from a Gaussian splatting rep-
resentation, instead of predicting sound from a video.

3D audio reconstruction. A recent line of work has
generated sound from 3D body pose [15, 49]. In con-
trast, we model the combination of the action and the
real-world objects that it is physically interacting with,
rather than the body itself. Work on acoustic reconstruc-
tion [2, 5, 9, 26, 29, 43] models how a sound propagates
through a 3D scene, given the position of a sound and a
listener. This line of work is complementary to ours: we
model the generated sound in a scene, rather than the inter-
action between the listener and the sound.

3. Method

We aim to obtain a multimodal 3D reconstruction of a scene
that allows us to predict the sound of actions. To do so, we
combine a visual neural field Fθ : (x, r) 7→ (c,d) that maps
a 3D point x and viewing direction r to its corresponding
RGB color c and depth d with an action-conditioned audio
estimator Fϕ : (v,a) 7→ s, which generates sound s given
the video v and the action a. This action specifies the tra-
jectory of a hand that physically interacts with the scene.
We focus on human hands since they are capable of many
motions (e.g., tapping, scratching, patting); they are crucial
within virtual world applications; and can be easily captured
in 3D without special equipment.

In the rest of this section, we explain how to generate
a large and diverse dataset to train Fϕ (Sec.4). Then, we
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Figure 2. Sound generation. We train a rectified flow model [46]
to generate a sound spectrogram from a sequence of 3D hand po-
sitions and video frames generated from a 3D reconstruction of a
scene. The sound can subsequently be converted into a waveform
using a vocoder.

explain the functional form that we use to instantiate Fϕ

(Sec. 3.2).

3.1. A Dataset of 3D hand-scene
interactions with synchronized audio

Training a generalizable Fϕ requires a diverse dataset of
synchronized interaction videos v, actions a, and resulting
sound s. We collect this dataset in 19 different scenes, in-
cluding bedrooms, lobbies, outdoor trees, and musical in-
struments (see Fig. 5 for some dataset samples). For each
scene, we first generate a 3D reconstruction Fθ using Gaus-
sian Splatting [20]. Specifically, a human collector scans
the scene by recording multiple views, whose poses are es-
timated using the structure of motion [41].

After scanning, we collect videos of humans interacting
with different regions of the scene (Fig. 3). During such
interactions, the data collector performs a variety of actions
with their hands, e.g., squeezing, hitting, or scratching, on
some of the objects present in the scene, e.g., tables, plastic
bags, or trees. We use this procedure to generate a set of
videos with various impact sounds. Note that during each
interaction, we keep the camera location fixed by mounting
the recording device to a tripod.

We use HaMeR [37] for 3D hand detection in such in-
teraction videos. Specifically, we define the sequence of N
3D hand keypoints for both hands as a ∈ R2N×21×3. If one
hand is not visible, we pad its detections with zeros. We reg-
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Figure 3. Data capturing pipeline. In the original video, a human collector interacts with the scene by performing various actions with
their hands. We lift the annotator’s hands to the same 3D space of the scene reconstruction. We render a video of the interaction by
projecting 3D hands on multiple viewpoints of the scene. All rendered videos are synchronized with the sounds made by the hand actions.

ister the camera on the tripod c to Fθ with COLMAP [41],
obtaining its global position TFθ

c . Then, we use a and Fθ to
generate a simulated interaction video v. Specifically, we
project the sequence of 3D hands a on an RGB view of Fθ

at the camera position TFθ
c (Fig. 3). We label each simu-

lated video v with the sound s from the original video of
the human interacting with the scene.

We collect approximately 1,800 seconds of videos in
each scene, with a frame rate of 30Hz. We pre-process these
videos to generate a, v, and s as explained above. This pre-
processing results in a dataset of approximately 9.4 hours of
simulated interactions. We additionally use the relative po-
sition of the camera to the scene TFθ

c to project a from the
local camera frame to the global frame of Fθ. This allows us
to synthesize two novel views of the simulated interactions
from slightly different viewpoints, i.e., top view, side view.
Fig. 3 shows some representative samples for this process.
To the best of our knowledge, this is the first dataset to cap-
ture human actions along with their sounds that are spatially
aligned in 3D scenes.

3.2. Generating action-conditioned sound

We represent Fϕ as a generative model pϕ(s | v,a) where
s is the sound generated by a in the video v. Similarly to
previous work, we represent s as a mel-spectrogram, trans-
forming audio synthesis into image generation.

We instantiate pϕ(s | v,a) as a rectified-flow match-
ing generative model [27]. Our model is built upon the
video-to-sound Frieren model [46]. Similarly to Frieren,

we compress s to a latent vector with a pre-trained autoen-
coder, and train a generative model in latent space. How-
ever, we empirically found the Frieren model to fail to gen-
erate high-quality sound from our videos, even when fine-
tuned on our dataset. This is because our videos contain
simulated interactions, which lack the low-level details and
consistency of real videos, e.g., the motion and deforma-
tion of objects. Therefore, we introduce two key modifica-
tions to Frieren: (i) we encode v with CLIP [39] instead of
CAVP [28] since we found CLIP to have better spatial con-
sistency and material understanding; and (ii) we explicitly
condition the model on 3D action a, which forces the model
to focus on the low-level details of the hand motion. We
empirically found these two modifications to be crucial for
performance, as we demonstrate in the experimental sec-
tion. A visualization of the schematics of our model can
be found in Fig. 2. Further implementation details can be
found in Sec. 5.

We train Fϕ from scratch on our dataset. After training,
we can generate the sound of previously unseen interactions
â in the scene Fθ by first selecting a camera viewpoint TFθ

c

and then rendering a video of the interaction v̂. We then
use our model to predict the interaction’s sound ŝ by pass-
ing â and v̂ to our generative model. We use the ability
to generate sound for new actions in the scene to design an
interactive interface for Fθ (Sec. 6.2).



Figure 4. Representative examples from the dataset. Our dataset is collected in 19 scenes, including offices, outdoor trees, bedrooms,
etc. We show six such scenes in the figure above, with examples of action-generated sounds. Our dataset covers a wide range of actions
(hitting, scratching, patting, etc.) and interacted materials (wood, metal, plastic. etc.). In each scene, approximately 1,800 seconds of
videos are collected, resulting in a total of 9.4 hours of interaction data.

4. A 3D Visual-Audio Dataset
4.1. Dataset Statistics

Our dataset is collected in 19 scenes including bedrooms,
lobbies, outdoor trees, musical instruments, etc. We collect
approximately 1,800 seconds of videos in each scene, which
gives us a total of 9.4 hours of videos. The frame rate of the
videos is set to 30 FPS. For each video, we synthesize three
videos from different views (original view, top view, side
view) using the pipeline described in Sec. ??, resulting in
28.1 hours of videos in our final dataset.

Fig. ?? shows some representative samples from our
dataset. Our dataset includes various hand actions (hit,
scratch, squeeze, etc.) and materials (tables, plastic bags,
trees) in the scene, resulting in distinct sounds of different
videos. To the best of our knowledge, this is the first dataset
the captures human actions along with its sounds that are
spatially aligned with 3D scenes.

5. Implementation Details
We reconstruct the 3D scene using the Splatfacto method
from Nerfstudio [44]. Approximately 1K images taken
from various views are used for each scene. The gaus-
sians are randomly initialized with scale regularization [48].
During training, we optimize the reconstruction with the
Adam [24] optimizer for 20,000 steps on a single NVIDIA
RTX 2080 Ti GPU.

5.1. Audio generation model training and inference

Our implementation of Fϕ is based on Frieren [46] but dif-
fers on the conditioning module to better suit our task. First,

we use CLIP features instead of CAVP features for encod-
ing the simulated interaction video v. Note that, similarly
to Frieren, we condition the model on the frames from the
video down-sampled at 4Hz. We also find that the visual
features extracted from downsampled videos are insuffi-
cient to capture fine-grained hand motions present in our
data. Therefore, we additionally condition the model on the
action a, which includes the trajectory of 3D hand poses.
Being sampled at 30Hz, a gives the model a higher resolu-
tion view of the action. We encode a to the same dimension
of the frame embeddings via a linear layer, and normalize
it to a unit vector. Finally, we upsample the frames and
actions embeddings to the same temporal frequency of the
sound spectrogram, i.e., 31.25 Hz, using nearest neighbor
upsampling. We then obtain the final conditioning vector
by summing the two embeddings elementwise. This condi-
tioning vector is concatenated to the input noise and passed
to the vector field estimator to generate the latent spectro-
gram representation of the sound.

Following previous works [28, 46], we divide our dataset
into non-overlapping chunks of eight seconds duration. The
video’s audio is downsampled to 16kHz and transformed
into mel-spectrograms with 80 bins and a hop size of 256.
We use 10% of the collected videos as the test set, 10% as
validation, and the remaining as the training set. We use the
knowledge of each video’s camera pose TFθ

c to ensure that
none of the camera views in the test set overlap with the
ones in the training and validation set.

We then train the model for 22 epochs with a batch size
of 128 using the Adam [24] optimizer. We initialize the
learning rate to 10−5, do a warmup to 4 × 10−4 over 1000



Figure 5. Dataset examples.

Table 1. Ablation study. Since CLIP features and hand poses respectively provide material information and precise sound synchronization,
removing either of them from conditioning will result in a significant drop in the overall performance. In particular, removing CLIP features
and hand poses results in the greatest drop in the CLAP material accuracy and action accuracy, respectively. On the other hand, excluding
multi-view data augmentation only slightly affects the performance.

Model variation STFT ↓ Envelope ↓ FID ↓ IS ↑ CDPAM (×10−4) ↓ CLAP-acc (%) ↑ Labeled real (%) ↑

all action material

Full 0.65 0.75 62.95 15.70 2.45 32.36 52.42 54.55 39.84 ± 2.17
w/o CLIP 0.94 0.92 60.84 16.83 3.65 25.87 47.38 46.32 34.96± 2.11
w/o hand pose 0.88 0.87 63.70 15.53 3.02 24.42 45.54 47.97 35.55± 2.12
w/o multi-view 0.72 0.78 63.75 17.46 2.78 31.59 51.55 53.97 42.19 ± 2.18

steps, and finally linearly decrease it to 3.4× 10−4 over 22
epochs. We train on a single NVIDIA L40s.

At inference time, the model performs 26 sampling
steps with a 4.5 guidance scale. The generated latent is
then decoded into a mel-spectrogram with a pre-trained de-
coder [46]. Finally, a pretrained vocoder [25] is used to
transform the spectrogram into a waveform.

6. Experiments

We design our experiments to answer the following ques-
tions: (1) Can Fϕ generate synthetic sounds that are almost
indistinguishable from real ones? (2) How important is con-
ditioning on v and a? (3) Do the predicted sounds convey
physical properties of the scene, e.g., its material and their
position relative to the camera? We answer these questions
with qualitative and quantitative experiments.

6.1. Experimental Setup

We use the following metrics to evaluate the quality of the
synthetic sounds generated by Fϕ and compare it to a set of
baselines.

Raw Audio Similarity. As custom in previous work [13],
we measure the L2 distance between ground-truth and pre-
dicted audio signals in both the spectrogram (STFT) and
waveform (Envelope) space. This metric primarily assesses
the model’s capability to capture low-level sound features.

Latent Space Similarity. We encode both ground-truth
and generated sounds to a latent representation and measure
their distance in this space. Specifically, we adopt the CD-
PAM [30] metric to measure distances in the latent space,
which uses a pretrained model to quantify perceptual au-
dio similarity. Additionally, following previous work [46],
we compute the Frechet Inception Distance (FID) and In-
ception Score (IS) using the pretrained mel-ception encoder
model from SpecVQGAN [16].

CLAP accuracy. To assess the model’s effectiveness in
generating sounds that accurately represent the actions and
material properties in a scene, we introduce a new metric:
CLAP accuracy. This metric evaluates whether an off-the-
shelf CLAP model [47] assigns the same zero-shot label to
both the ground truth and synthetic sounds. Specifically,
we define an action set A comprising 7 hand actions (e.g.,



knocking, scratching) and a material set M with 11 mate-
rials (e.g., wood, plastic). From these, we generate a set
P of 77 action-material pairs by taking the Cartesian prod-
uct of A and M. For each pair in P, we format the CLAP
model’s text prompt as: “This is a sound of a hand {action}
{material},” with {action} and {material} drawn from the
pairs in P. We then record the number of instances where
the ground truth and generated sounds are assigned the same
label (CLAP-acc, All). For a more fine-grained analysis,
we additionally report the frequency of action label matches
(CLAP-acc, Action) and material label matches (CLAP-acc,
Material). This metric is inspired by prior work in sound
generation [35], which similarly utilizes linear models to
classify materials.

Psychophysical study. We conduct a psychophysical user
study to evaluate whether participants can distinguish be-
tween generated and real sounds. Sixty-four participants
participated in this study. Each participant viewed 32 pairs
of 8-second interaction videos v with each pair comprising
one video with ground-truth sound and one with generated
sound. These pairs were sampled from a set of 1027 video
pairs, with sounds generated either by our full model or one
of its ablations, selected with equal probability. Follow-
ing prior work [35], we use a two-alternative forced-choice
(2AFC) test, where participants select the video they believe
has the most realistic sound in each pair. All videos in the
study are from the test set.

6.2. Results

We begin by analyzing the differences in generated sounds
produced by our full model and its ablations using quan-
titative distance metrics. The evaluation results, shown in
Table 1, indicate that while all features of our model con-
tribute to the generation quality, some are more essential
than others. Notably, removing conditioning on either the
CLIP embeddings of the video or the 3D hand poses leads
to a significant drop in performance. In contrast, exclud-
ing multi-view data augmentation during training has the
smallest impact, resulting in only minor changes in both
raw audio and latent distance metrics. For metrics based
on a pretrained melception model (FID and IS), all methods
perform similarly. We hypothesize that this is due to our
data differing significantly from VGGSound [3], the dataset
on which the melception model was originally trained.

Interestingly, we observe that removing CLIP features
results in the greatest drop in CLAP action accuracy, while
removing hand pose features most affects material accu-
racy. This aligns with expectations: CLIP features primarily
provide material information about the scene, while hand
pose features are essential for encoding actions.

In Fig. 6, we present qualitative results for two interac-
tions. Visual inspection reveals that the generated spectro-
grams contain less background noise than the ground-truth

samples. Additionally, we find that removing hand pose
features disrupts audio-video synchronization, as visual in-
formation alone is insufficient for accurately estimating pre-
cise hand motions. Similarly to quantitative results, models
trained with and without multi-view augmentation produce
relatively similar spectrograms.

6.2.1 Psychophysical study

We measure how often participants misclassify generated
for ground-truth sound. Ideally, if the two sounds are com-
pletely indistinguishable from each other, we are to observe
a miss-classification rate of 50%, which indicates that par-
ticipants pick at random. The results of this analysis, av-
eraged over all videos and participants, are shown in the
rightmost column of Tab. 1. We find that both our full sys-
tem generates high-quality sounds with a misclassification
rate of approximately 40%.

Similarly to what was observed in auditory metrics, we
did not find the difference between the full model and
the one without multi-view augmentations to be significant
(p = 0.44 with a two-sided t-test). However, both the full
model and the one without multi-view augmentations are
better than control baselines. Specifically, the model with-
out multi-view augmentation significantly outperforms the
baseline without CLIP embeddings (p = 0.0175) and the
baseline without 3D hand poses (p = 0.0293).

We show results broken down by the properties of the
material the hand interacts with in Fig. 7. Participants often
misclassified synthetic sounds as real across all categories,
though we hypothesize that the reasons varied by category.

For instance, sounds produced by hard materials tend to
be sharp and resonant, making them more prototypical and
predictable for the model. Conversely, soft surfaces often
produce more varied sounds, which are more complex to
predict both for our model and the participants.

It is worth noting that our dataset includes fewer interac-
tions with soft than hard materials (342 vs. 690) and fewer
with smooth than rough surfaces (273 vs. 759). This imbal-
ance likely contributes to the higher standard error observed
in these categories.

6.2.2 Learning about materials and distances from
predicting sounds

Our previous experiments suggest that the predicted sounds
reflect the scene’s physical properties, such as its materi-
als. Assuming that similar sounds imply similar materials,
one could potentially use predicted sounds for unsupervised
scene segmentation. In addition, assuming that the materi-
als in the scene are not wildly different, the volume of gen-
erated sounds might serve as a proxy for estimating object
distances from the camera. To test these hypotheses, we de-
signed an interface that automatically selects plausible ac-
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Figure 6. Qualitative sound prediction results. We show the spectrogram predictions from our full model and three ablations. We
observed that our generated sounds contain less background noise when compared to the G.T. samples. We notice that removing CLIP
features softens impact sounds while removing hand pose features results in poor audio-video synchronization. Similar to quantitative
results, the model trained without multi-view augmentation performs similarly to the full model.

Figure 7. Results of psychophysical study. We show the ratio of humans being fooled by different variants of our model. We break down
our results into three categories: softness, smoothness, and average over all samples. The error bars show 95% confidence intervals. We
find that both our full model and the one trained without multi-view augmentation achieve a misclassification ratio of approximately 40%,
indicating the high quality of the generated sounds. In addition, both models outperform baselines without visual or action information.

tions for interacting with various points in a scene’s camera
view. We start by choosing a sequence of 3D hand poses,
a∗ (e.g., patting a flat surface), from the training dataset and
estimating the interaction surface normal Np. Next, we di-
vide the camera view into a 16×16 grid, projecting a∗ onto
each grid cell to generate an adapted action ac. This is done
by estimating each cell’s surface normal Nc and rotating a∗

to match the angle between ac and Nc with that of a∗ and
Np. To produce the corresponding video vc, we rotate the
camera frame so that the cell is centered in the view.

Finally, we pass ac and vc to Fϕ to generate the associ-

ated sound sc for each cell. This effectively simulates the
sound that action a∗ would produce if performed at each
grid cell’s position within the camera view.

We applied this procedure to an indoor scene (Fig. 8). To
estimate pseudo-depth, we calculate the average sound vol-
ume in each cell as the mean of its squared spectrogram and
rank the cells by volume, under the assumption that more
distant objects will generate lower amplitude audio. For un-
supervised segmentation, we encoded the generated sounds
from each cell using a pre-trained CLAP model [47], ap-
plied K-means clustering (K = 4) to the encodings, and
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Figure 8. Material and distance predictions from predicted
sounds. We split the RGB image into grid cells and query our
designed interface with the center of each grid cell and a patting
hand action, which gives us a predicted sound for each cell. We
use the predicted sounds to estimate pseudo-depth by ranking the
cells by sound volumes. We also obtain unsupervised segmen-
tation by clustering the CLAP features of the predicted sounds,
which achieves results comparable to those of the clusters obtained
from CLIP embeddings of novel views of the scene centered in
each grid’s cell.

assigned a unique color to each cluster. For comparison, we
performed the same clustering on CLIP embeddings from
the first frame of each cell’s video vc.

Qualitative results, shown in Fig. 8, show a correlation
between volume ranking and depth and high similarity be-
tween audio and visual feature clusters. Additional qualita-
tive experiments are included in the supplement.

7. Conclusion

Our work makes a step forward towards realistic and im-
mersive 3D scene reconstructions, with promising potential
for robotics and VR applications. We do so by predicting
the sound of hands interacting with a scene. Both auto-
mated evaluations and psychophysical studies show that our
synthetic sounds outperform baselines and are often indis-
tinguishable from real sounds, while also providing insight
into some physical properties of the scene. However, a key
limitation is our approach is that we don’t model object dy-
namics, which could significantly impact actions’ sound as
scene complexity grows. Addressing this limitation repre-
sents an exciting direction for future work.
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Hearing Hands: Generating Sounds from Physical Interactions in 3D Scenes

Supplementary Material

Figure 9. Example of human study. We present each user with 32 pairs of videos, as the one above. One has real audio, and the other
has synthetic audio generated by our model (in random order). The user is then asked to select the video that sounds more realistic. In the
process, we ensured that users were exposed to an equal number of total 512 video pairs for each of the four models: full model, without
CLIP, without handpose, and without multi-view.

A.1. Visualization Video

We invite the reader to watch our supplementary video. The
video includes the data collection procedure with 3D ren-
dering, a brief introduction of our model, user study, and
the representative model prediction results. To judge the
quality of the generated sound, we include 6 comparisons
between the generated sound and the ground-truth recorded
sound at the end of the video. Note that all the results are
shown on a testing set unseen at train time.

A.2. Further Psychophysical Study Analysis

Both our full model and the one trained without multiview
augmentation generate high-quality sounds with a misclas-
sification rate of approximately 40%, generally outperform-
ing baselines without visual or action information. An ex-
ample view of the survey is shown in Fig. 9.

We conducted qualitative analysis to break down this re-
sult and categorize the interaction videos by hand motions
and material properties with which the hand interacts. Syn-
thetic sounds of the hand patting or beating a hard, unified
surface (e.g. table, wooden shelf, white board, sofa arm-
rest, tree trunk, etc.) have a higher misclassification rate
than those of the hand rubbing or scratching cluttered small
objects. We hypothesize that this is because large pieces of
unified hard materials tend to make unified and prototypical
sounds, which are easier and more straightforward for our
models to learn and predict. In contrast, hand interactions
with cluttered objects are more likely to cause irregular de-
formation or displacement due to different material prop-
erties, creating subtle and dynamic sound changes that are

harder for our model to capture. Indeed, these cases have
much lower misclassification rates.

We also noticed that the misclassification rate increases
when the image reconstruction quality from the 3D scene
decreases since it is difficult for humans to understand ex-
actly what is being touched. Finally, while generally real-
istic, synthetic audio often sounds more “scratchy” and less
sharp than real audio.

A.3. More examples on material and distance
predictions from predicted sounds.

We perform a qualitative study to understand whether the
generated sounds convey information about the physical
properties of the material being touched. Fig. 10 shows
further qualitative results of unsupervised segmentation and
pseudo-depth estimation. These results show that pseudo-
depth estimation using as a proxy the volume of the pre-
dicted sound is often not much aligned with the real depth of
the scene, except if the visible materials are relatively simi-
lar. Such correlation between material and sound is evident
in the unsupervised object segmentation results. Indeed, we
occasionally found that the clusters of synthetic audio fea-
tures convey sharper information about the materials than
their respective CLIP embeddings. In Fig. 10, for instance,
this happens with the white door in the second row and the
closet in the third row. Overall, these experiments show
that our approach conveys a deeper physical understanding
of the scene.
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Figure 10. Material and distance predictions from predicted sounds. We split the RGB image into grid cells and query our designed
interface with the center of each grid cell and a patting hand action, which gives us a predicted sound for each cell. We use the predicted
sounds to estimate pseudo-depth by ranking the cells by sound volumes. We also obtain unsupervised segmentation by clustering the CLAP
features of the predicted sounds, which achieves results comparable to those of the clusters obtained from CLIP embeddings of novel views
of the scene centered in each grid’s cell. We found pseudo-depth estimation to be generally low quality, especially if the materials in the
scene sound very different. However, segmenting objects according to their sound qualitatively looks as good (and at times better), than
the one obtained by clustering visual features.
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