
 
COSE361(03)-Final Project 2/2  

Pacman algorithm minicontest 2  
 
 
 

Wonseok OH 

 
Abstract 

 
It has various ideas for Pacman game algorithms. We 
put the best implemented algorithm as the best case, 
and then check the score by comparing it with other 
baselines. When implementing Pacman algorithms, 
various search methods and learning methods are 
used, and each algorithm is assigned a different color 
of Pacman when checking the results. The one with 
the higher score wins. The goal was to get a higher 
score than the opponent by creating a Pacman that 

works in various ways.  
 
 

1. Introduction 
 
 

• This mini-contest involves a multi-player capture-
the-flag variant of Pacman, where agents control 
both Pacman and ghosts in coordinated team-based 
strategies. Your team will try to eat the food on the 
far side of the map, while defending the food on your 
home side.  
 

• I think it is mainly about comparing Pacman's 
movements with mine in baseline. Thus, Pacman's 
movements were identified in the baseline, and 
Pacman's movements were devised by adding ideas 
to them. 

 
• The rest is the same as the last assignment, which 

has a score on the pallet, is terminated when the 
destination state is reached, and the last value of the 
reward is paid back. If this is the case, the game will 
be over, and the results will be based on who won by 

comparing the scores given. 
 

 
 
 
 

 
 
 
 

 

 

 

 
 
 
2. Methods 
 
First of all, baseline picked up three things and added his 
own format. It consists of your baseline 1, your baseline 2, 
and your baseline 3. Your baseline 1 added the value of 
the existing baseline. From here, the offensivereflexagent 
is entered and the defensive reflex agent is added. In 
addition, the choiceAction process included a correction 
value for maxValue, and the getSuccessor section simply 
stated the position. The evaluation section includes 
features and weights. 
 
OffensiveReflexAgents is A reflex agent that seeks food. 
This is an agent we give you to get an idea of what an 
offensive agent might look like, but it is by no means the 
best or only way to build an offensive agent. Features, 
successors, and food lists are further designated. 
DefensiveReflexAgent is A reflex agent that keeps its side 
Pacman-free.  
Again, this is to give you an idea of what a defensive 
agent could be like. It is not the best or only way to make 
It's a suchan agent. Likewise, features and procedures 
were put in, and my state and my postion were included to 
complete the coat. 
 
Your baseline 2 adds features from your baseline 1. I 
thought this result would compensate Pacman for the loss 
to some extent. Looking for Feature in advance, I assumed 
that the result would be better, resulting in a better 
winning rate. 
Your baseline 3 is composed of best cases. I tried to 
improve the results by learning Pacman through Q-
Learning.  
 



3. Result 
 
The results were submitted after creating 10 csv files and 
re-veraging them. 
 
Naturally, your baseline 1 showed the lowest winning 
percentage and score because it was like baseline. Your 
baseline 2 speculated that the results would be dominant 
with information on features, but the results were non. 
This determined that the result of the code was not perfect. 
In other words, giving information about features naturally 
meant that the rest of the information should be given 
together. 
 
Naturally, your baseline 3 results came out best and I was 
able to designate this result as the best case. This is due to 
the principle of reinforcement learning that results are 
improved when q-learning is conducted through feature 
verification.  
 
 

4. Conclusion 
 
As I said earlier, the results of learning through 
reinforcement learning were also shown in terms of 
Pacman's score and winning rate. I understand this part 
explicitly but I think Pacman's result could prove it more 
clearly. 
 
 

5. Free Discussion 
 
What is reinforcement learning and why did we use it for 
the Pacman algorithm? 
Reinforcement learning is learning which action is optimal 
in the current state. Rewards are given in the external 
environment each time an action is taken, and the learning 
proceeds in the direction of maximizing these rewards. 
And these rewards may not be given immediately after 
action (delayed rewards). For this reason, the difficulty of 
the problem increases significantly compared to 
supervised/unsupervised learning, and the challenge of 
confidence allocation related to properly rewarding the 
system still afflicts researchers. One can think of making 
artificial intelligence for games. The current deployment 
of the enemy's horse from chess becomes the State, and 
the action is which horse to move. If you catch your 
opponent's horse, you will be rewarded, and it may take 
time for the opponent's horse to move far away, so there 
may be occasions when the opponent's horse is not 
immediately rewarded. It's even tactically profitable to 
catch the horse, but it's disadvantageous, so you can lose 
the game when it's over. (Delayed Compensation). 
Therefore, reinforcement learning requires action to be 
selected to maximize the sum of rewards, including those 
to be obtained later, even if the immediate rewards are a 

little small, and players who act do not know what actions 
maximize the sum of those rewards.  


